Project description:Full title: Probing the pan genome of a foodborne bacterial pathogen Listeria monocytogenes: Implications for its niche adaptation, pathogenesis, and evolution Listeria monocytogenes is a foodborne bacterial pathogen well known for adaptability to diverse environmental and host niches, and a high fatality rate among infected, immuno-compromised individuals. Three genetic lineages have been identified within this species. Strains of genetic lineages I and II account for more than ninety percent of foodborne disease outbreaks worldwide, whereas strains from genetic lineage III are rarely implicated in human infectious for unknown, yet intriguing, reasons. Here we have probed the genomic diversity of 26 L. monocytogenes strains using both whole-genome sequences and a novel 385,000 probe pan-genome microarray, fully tiling the genomes of 20 representative strains. Using these methods to identify genes highly conserved in lineages I and II but rare in lineage III, we have identified 86 genes and 8 small RNAs that play roles in bacterial stress resistance, pathogenicity, and niche, potentially explaining the predominance of L. monocytogenes lineages I and II in foodborne disease outbreaks. Extending gene content analysis to all lineages revealed a L. monocytogenes core genome of approximately 2,350 genes (80% of each individual genome) and a pan-genomic reservoir of >4,000 unique genes. Combined gene content data from both sequences and arrays was used to reconstruct an informative phylogeny for the L. monocytogenes species that confirms three distinct lineages and describes the relationship of 9 new lineage III genomes. Comparative analysis of 18 fully sequenced L. monocytogenes lineage I and II genomes shows a high level of genomic conservation and synteny, indicative of a closed pan-genome, with moderate domain shuffling and sequence drift associated with bacteriophages is present in all lineages. In contrast with lineages I and II, notable genomic diversity and characteristics of an open pan-genome were observed in the lineage III genomes, including many strain-specific genes and a more complex conservation pattern. This indicates that the L. monocytogenes pan-genome has not yet been fully sampled by genome sequencing, and additional sequencing of lineage III genomes is necessary to survey the full diversity of this intriguing species and reveal its mechanisms for adaptability and virulence. This is a Listeria monocytogenes pan-genome tilling array designed using PanArray algorithm. 9 experimental strains (F2-569, M1-002, F2-208, J2-071, J1-208, W1-111, W1-110, F2-524, F2-501) vs reference (EGD-e) strain.
Project description:Full title: Probing the pan genome of a foodborne bacterial pathogen Listeria monocytogenes: Implications for its niche adaptation, pathogenesis, and evolution Listeria monocytogenes is a foodborne bacterial pathogen well known for adaptability to diverse environmental and host niches, and a high fatality rate among infected, immuno-compromised individuals. Three genetic lineages have been identified within this species. Strains of genetic lineages I and II account for more than ninety percent of foodborne disease outbreaks worldwide, whereas strains from genetic lineage III are rarely implicated in human infectious for unknown, yet intriguing, reasons. Here we have probed the genomic diversity of 26 L. monocytogenes strains using both whole-genome sequences and a novel 385,000 probe pan-genome microarray, fully tiling the genomes of 20 representative strains. Using these methods to identify genes highly conserved in lineages I and II but rare in lineage III, we have identified 86 genes and 8 small RNAs that play roles in bacterial stress resistance, pathogenicity, and niche, potentially explaining the predominance of L. monocytogenes lineages I and II in foodborne disease outbreaks. Extending gene content analysis to all lineages revealed a L. monocytogenes core genome of approximately 2,350 genes (80% of each individual genome) and a pan-genomic reservoir of >4,000 unique genes. Combined gene content data from both sequences and arrays was used to reconstruct an informative phylogeny for the L. monocytogenes species that confirms three distinct lineages and describes the relationship of 9 new lineage III genomes. Comparative analysis of 18 fully sequenced L. monocytogenes lineage I and II genomes shows a high level of genomic conservation and synteny, indicative of a closed pan-genome, with moderate domain shuffling and sequence drift associated with bacteriophages is present in all lineages. In contrast with lineages I and II, notable genomic diversity and characteristics of an open pan-genome were observed in the lineage III genomes, including many strain-specific genes and a more complex conservation pattern. This indicates that the L. monocytogenes pan-genome has not yet been fully sampled by genome sequencing, and additional sequencing of lineage III genomes is necessary to survey the full diversity of this intriguing species and reveal its mechanisms for adaptability and virulence.
Project description:Variants on the Y chromosome for 62 danish males in VCF format from the GenomeDenmark Phase 2 cohort. Variants were called using reference based approaches such as the haplotype-caller module from GATK and using alignment of denovo assemblies to the reference using ASMvar.
Project description:Sequencing of Danish parent-offspring trios to determine genomic variation within the Danish population. Phase II comprises of 50 trios sequenced to 80X using Illumina with libraries of insert sizes from 180bp-20kb.
Project description:Alignment of Genome Denmark Phase II dataset to GRCh38. The dataset consists of 150 Danish individuals (50 trios) sequenced to 80X. The BAM-file contains data from multiple libraries created from one individual with libraries of 180, 500, 800, 2000, 5000, 10000 and 20000 bp. The libraries were created using standard Illumina protocols for paired end reads (180-800bp libraries) and mate pair libraries (2kb-20kb).
Project description:Bulk RNA seq of FACS isolated C. elegans neurons, with pan-neuronal reference, and sorted viable cell reference samples. Collected for comparison to single cell sequencing data
Project description:Bulk RNA seq of FACS isolated C. elegans neurons, with pan-neuronal reference, and sorted viable cell reference samples. Collected for comparison to single cell sequencing data
Project description:Purpose: The present study aimed to develop a classification model to predict recurrence in stage II and III colon cancer, using a previously published 128-gene signature on external and independent material. Experimental Design: Microarray gene expression data from 148 patients (37 Danish patients and 111 patients retrieved from the Gene Expression Omnibus, GSE17536) with stage II and III colon cancer were analyzed using Affymetrix Arrays (Affymetrix, Santa Clara, USA). Based on a known 128-gene signature, a classification model was created with the random forest method, using a training set consisting of stage I colon cancers (with localized disease and a good prognosis) and stage IV colon cancers (with metastasis and a poor prognosis). The classifier were built to predict stage II and III colon cancers as either stage I-like (good prognosis) or stage IV-like (poor prognosis). Results: The 3-year relapse-free survival probability (RFS) of stage III patients predicted to have a good prognosis was 79% compared to 55% of patients with a poor prognosis (P = 0.177, log-rank test). The classification model could not stratify stage II colon cancer. The complete dataset representing: (1) the 37 Danish patients (2) the 111 patients retrieved from Series GSE17536 (re-used data), is linked below as a supplementary file. Tumor samples were obtained from 37 patients with stage II and III colon cancer, who underwent colon resection at the Department of Surgery, Roskilde Hospital, Denmark and the Department of Surgery, Bispebjerg Hospital, Denmark between 2001 and 2008. Purified tumor RNA was reverse-transcribed, labelled and hybridized to Affymetrix Human Genome U133 Plus 2.0 GeneChip Array (Affymetrix, Santa Clara, USA) according to the manufacturers instructions and scanned at the RH Microarray Center, Rigshospitalet, University of Copenhagen.
Project description:Comparative genomic hybridization between Escherichia coli strains to determine core and pan genome content of clinical and environmental isolates Two color experiment, Escherichia coli Sakai (reference), clinical and environmental Escherichia coli strains (testers): At least two replicates including a single dye swap for each reference-tester comparison