Project description:Sewage samples were collected and concentrated for Human and animal viruses. Viruses were cultured on Buffalo Green Monkey Cells (BGMK) and their genomic DNA/RNA were extracted and labeled with Cy3 and Cy5 respectively. Labeled DNA/RNA were hybridized unto the array and signals generated were analyzed to indicate the presence of target viruses. Keywords: Detection of pathogens within environmental sample (Viruses)
Project description:Sewage samples were collected and concentrated for Human and animal viruses. Viruses were cultured on Buffalo Green Monkey Cells (BGMK) and their genomic DNA/RNA were extracted and labeled with Cy3 and Cy5 respectively. Labeled DNA/RNA were hybridized unto the array and signals generated were analyzed to indicate the presence of target viruses. Keywords: Detection of pathogens within environmental sample (Viruses) Environmental viruses were concentrated using organic flocculation with Beef Extract supplemented with glycine. Viruses were concentrated using 2 successive rounds of centrifugation and resuspended in Sodium Phosphate buffer. Viral nucleic acid was extracted, labeled and hybridized unto the microarray to determine the presence of target viruses within the sample.
Project description:Hepatic transcriptional profiling of fish exposed to sewage to evaluate temporal and concentration trends. Two experiments (Year 1 and 2), each with 6 concentrations (0%, 0.05%, 0.1%, 0.7%, 2% and 5/10%) of sewage diluted in seawater at 4 timepoints (1, 4, 8 and 16 days).
Project description:Effluents from sewage treatment plants contain a mixture of micropollutants with the potential of harming aquatic organisms. Thus, addition of advanced treatment techniques to complement existing conventional methods has been proposed. Some of the advanced techniques could, however, potentially produce additional compounds affecting exposed organisms by unknown modes of action. In the present study the aim was to improve our understanding of how exposure to different sewage effluents affects fish. This was achieved by explorative microarray and quantitative PCR analyses of hepatic gene expression, as well as relative organ sizes of rainbow trout exposed to different sewage effluents (conventionally treated, granular activated carbon, ozonation (5 or 15 mg/L), 5 mg/L ozone plus a moving bed biofilm reactor, or UV-light treatment in combination with hydrogen peroxide). Exposure to the conventionally treated effluent caused a significant increase in liver and heart somatic indexes, an effect removed by all other treatments. Genes connected to xenobiotic metabolism, including cytochrome p450 1A, were differentially expressed in the fish exposed to the conventionally treated effluents, though only effluent treatment with granular activated carbon or ozone at 15 mg/L completely removed this response. The mRNA expression of heat shock protein 70 kDa was induced in all three groups exposed to ozone-treated effluents, suggesting some form of added stress in these fish. The induction of estrogen-responsive genes in the fish exposed to the conventionally treated effluent was effectively reduced by all investigated advanced treatment technologies, although the moving bed biofilm reactor was least efficient. Taken together, granular activated carbon showed the highest potential of reducing responses in fish induced by exposure to sewage effluents.
Project description:Arthropod-borne viruses (arboviruses) represent a threat to global public health, especially in the tropical and subtropical regions of the world. More than 150 arboviruses can infect humans; they cause mainly febrile illness, although hemorrhagic complications and diseases affecting the central nervous system (SNC) can also be observed. Arboviruses represent a threat to Brazil and, therefore, a permanent surveillance of these viruses is required to timely reduce the risk of epidemic outbreaks. The Brazilian Amazon region is where the highest number of arboviruses has been detected in the world. Besides, malaria is also endemic in the Amazon region, with a significant predominance of Plasmodium vivax. It is often difficult to differentiate between malaria and arboviral diseases, as they share similar clinical features and laboratory findings, mainly undifferentiated fever. This study aimed to estimate possible viral etiology in patients with febrile syndrome negative for Plasmodium infection, in the Brazilian Amazon. We initially analyzed serum samples of 124 participants with a DNA microarray platform designed for the detection of arboviruses and viruses transmitted by small mammals, but no virus was detected. Then, the serum samples of 76 participants were analyzed with a deep New Generation Sequencing, which showed evidence of the presence of only one arbovirus, the Zika virus in only one pool of 9 serum samples. This result is in contrast with our hypothesis, showing that arboviruses are not frequent in suspected malaria cases in Manaus, Brazil. Other viruses instead of arboviruses were found in this study. Primate erythrovirus 1 was the virus most frequently found virus in the suspected malaria patients, followed by Enterobacteria phage lambda. Besides, we detected, in a lower frequency, the Pegivirus C. In addition to the exogenous viruses, we also detected human endogenous retrovirus in all pools. Due to the high number of viruses that are important in the differential diagnosis of malaria, cost-effective and simple high throughput methods are required, helping molecular surveillance of misdiagnosed viral infections. Further studies with more robust sample sizes in other areas in the Amazon are needed.