Project description:Aryl hydrocarbon receptor (AHR) activation by tryptophan (Trp) catabolites enhances tumor malignancy and suppresses anti-tumor immunity. Hitherto, indoleamine-2,3-dioxygenase 1 (IDO1) or tryptophan- 2, 3-dioxygenase (TDO2) are recognized as the main Trp-catabolizing enzymes (TCEs) responsible for the generation of AHR agonists. Here, the ability of the aromatic L-amino acid oxidase, interleukin 4 induced 1 (IL4I1), to activate the AHR was investigated using IL4I1 knockout CAS-1 glioblastoma cells.
Project description:Aromatic compounds are an important renewable source of commodity chemicals traditionally produced from fossil fuels. Aromatics derived from plant lignin can potentially be converted into commodity chemicals through depolymerization followed by microbial funneling of monomers and low molecular weight oligomers. This study investigates the catabolism of the b-5 linked aromatic dimer dehydrodiconiferyl alcohol (DC-A) by the bacterium Novosphingobium aromaticivorans. We used genome wide screens to identify candidate genes involved in DC-A catabolism. Subsequent in vivo and in vitro analyses of these candidates elucidated a catabolic pathway composed of four required gene products and several partially redundant dehydrogenases that convert DC-A to aromatic monomers that can be funneled into the central aromatic metabolic pathway of N. aromaticivorans. Specifically, a newly identified γ-formaldehyde lyase, PcfL, opens the phenylcoumaran ring to form a stilbene and formaldehyde. A lignostilbene dioxygenase, LsdD, then cleaves the stilbene to generate the aromatic monomers, vanillin and 5-formylferulate (5-FF). We also show that an aldehyde dehydrogenase FerD oxidizes 5-FF before it is decarboxylated by LigW, yielding ferulic acid. We found that some enzymes involved in b-5 catabolism pathway can act on multiple substrates and that some steps in the pathway can be mediated by multiple enzymes, providing new insights into the robust flexibility of aromatic catabolism in N. aromaticivorans. We performed a comparative genomic analysis to predict that key enzymes in the newly discovered b-5 aromatic catabolic pathway are common among Sphingomonads.
Project description:Monitoring microbial communities can aid in understanding the state of these habitats. Environmental DNA (eDNA) techniques provide efficient and comprehensive monitoring by capturing broader diversity. Besides structural profiling, eDNA methods allow the study of functional profiles, encompassing the genes within the microbial community. In this study, three methodologies were compared for functional profiling of microbial communities in estuarine and coastal sites in the Bay of Biscay. The methodologies included inference from 16S metabarcoding data using Tax4Fun, GeoChip microarrays, and shotgun metagenomics.
Project description:AIMS To identify the underlying mechanism by which Vitamin D reduces colorectal cancer risk.
OBJECTIVES To demonstrate the effects of vitamin D supplementation on serum vitamin D levels.
To demonstrate dynamic changes in gene expression in response to vitamin D. To demonstrate the mechanism underlying the gene-environment interaction of vitamin D, susceptibility genetic variants (risk genes) and colorectal cancer.
Project description:The development of reliable, mixed-culture biotechnological processes hinges on understanding how microbial ecosystems respond to disturbances. Here we reveal extensive phenotypic plasticity and niche complementarity in oleaginous microbial populations from a biological wastewater treatment plant. We perform meta-omics analyses (metagenomics, metatranscriptomics, metaproteomics and metabolomics) on in situ samples over 14 months at weekly intervals. Based on 1,364 de novo metagenome-assembled genomes, we uncover four distinct fundamental niche types. Throughout the time-series, we observe a major, transient shift in community structure, coinciding with substrate availability changes. Functional omics data reveals extensive variation in gene expression and substrate usage amongst community members. Ex situ bioreactor experiments confirm that responses occur within five hours of a pulse disturbance, demonstrating rapid adaptation by specific populations. Our results show that community resistance and resilience are a function of phenotypic plasticity and niche complementarity, and set the foundation for future ecological engineering efforts.
Project description:Microbiome target gene model is a Named Entity Recognition (NER) model that identifies and annotates microbiome target genes, phylogenetic marker genes or hypervariable regions in texts. This is the final model version used to annotate metagenomics publications in Europe PMC and enrich metagenomics studies in MGnify with target genes metadata from literature. For more information, please refer to the following blogs: http://blog.europepmc.org/2020/11/europe-pmc-publications-metagenomics-annotations.html https://www.ebi.ac.uk/about/news/service-news/enriched-metadata-fields-mgnify-based-text-mining-associated-publications
Project description:Human preimplantation development is a complex process involving extensive remodeling of gene expression. However, the preimplantation embryo transcriptome has only been annotated using short-read sequencing, which fails to capture full-length mRNAs and associated isoform diversity. We present a novel human embryo transcriptome using integrated long- and short-read RNA sequencing data. Our analysis reveals a total of 110,212 novel isoforms transcribed from known genes containing either a novel combination of known splice sites or at least one novel splice site, and 17,964 isoforms transcribed from completely novel genes located either in antisense direction of known genes or in intergenic space.