Project description:Pigs were slected based on feed conversion ratio (FCR) and classified into low FCR or high FCR. Pigs were then fed a diet with etiher a standard crude protein (CP) level, or a high or low CP level.
Project description:This research investigates the influence of nutritional protein restriction (NPR) during prepuberty on FE and the milk transcriptome of dairy Assaf ewes during their first lactation. Additionally, it evaluates the differences in the milk transcriptome between lactating ewes with divergent FE using the feed conversion ratio (FCR) and residual feed intake (RFI) indices and assesses milk gene expression as a predictor of FE.
Project description:Optimizing feed efficiency through the feed conversion ratio (FCR) is paramount for economic viability and sustainability. In this study, we integrated RNA-seq, ATAC-seq, and genome-wide association study (GWAS) data to investigate key functional variants associated with feed efficiency in pigs. Identification of differentially expressed genes in the duodenal and muscle tissues of low- and high-FCR pigs revealed that pathways related to digestion of dietary carbohydrate are responsible for differences in feed efficiency between individuals. Differential open chromatin regions identified by ATAC-seq were linked to genes involved in glycolytic and fatty acid processes. GWAS identified 211 significant single nucleotide polymorphisms associated with feed efficiency traits, with candidate genes PPP1R14C, TH, and CTSD. Integration of duodenal ATAC-seq data and GWAS data identified six key functional variants, particularly in the 1500985–1509676 region on chromosome 2. In those regions, CTSD was found to be highly expressed in the duodenal tissues of pigs with a high feed conversion ratio, suggesting its role as a potential target gene. Overall, the integration of multi-omics data provided insights into the genetic basis of feed efficiency, offering valuable information for breeding more efficient pig breeds.
Project description:In Poland, conducted for years porcine breeding works focused on improving meat content in the carcass without undertaken to accomplish the more effectiveness of fattening indicators that impact on feed efficiency. At present, feeding and feed conversion became important factors that are especially evident in the countries where the production of fattening pigs is conducted in large farms. In the present study, was attempted to indicate pituitary candidate genes depending on feed conversion ratio (FCR) in native Polish pig breed, Złotnicka White. The whole pituitary transcriptome was sequenced using next-generation sequencing technology. The obtained results show the differences in gene expression for pathways associated with hormonal regulation and also with Notch and Wnt signaling. Moreover, it was observed that worse FCR in Złotnicka pigs was associated with a higher fat level in a carcass and a significant higher level of prolactin expression in the pituitary.
Project description:Improvement of feed efficiency would increase profitability of the poultry industries by decreasing the amount of feed required for production. Korat (KR) chicken is a new alternative meat-type chicken breed which its meat is recognized for its high protein, low fat and low purine content, whereas its low feed efficiency leads to high cost of production. Deeper understanding on how feed efficiency influences meat quality is poorly elucidated. To fulfill deeper understand molecular key that point the variation in feed efficiency and meat quality, the aim of this study was to investigate molecular pathways and genes involved in feed efficiency and meat quality in thigh of slow-growing KR chicken. A total of 75 males KR chicken were reared in individual cage until 10 weeks of age. Individual feed intake and body weight were collected weekly to calculate Feed Conversion Ratio (FCR) and Residual Feed Intake (RFI). Meat quality parameters were measured in thigh muscles such as ultimate pH (pHu), water-holding capacity (WHC), drip loss (DL), nucleotides content and several biomolecules (amide, …). Base on extreme values of FCR at 10 weeks of ages, 12 birds from the high FCR group (HFCR) and 9 birds from the low FCR group (LFCR) were selected for investigating their transcriptome using an 8×60K Agilent chicken microarray. In addition, a weighted gene coexpression network analysis was performed to detect the relationship between modules of co-expressed genes and feed efficiency, meat quality in thigh muscle. The result in this study indicated that selection on feed efficiency (FCR, RFI) would affect flavor precursor, lipid and protein content in thigh muscle. Based on WGCNA and functional enrichment analysis, results suggested that the key molecular pathways relate to FCR, RFI and meat quality (WHC, DL, IMP, AMP and inosine) in thigh muscle were the pathways of regulation of biological process, biological regulation and regulation of metabolic. Moreover, we revealed four genes there are assembly competence domain (ACD) gene, baculoviral IAP repeat containing 5 (BIRC5) gene, cytochrome c oxidase assembly factor 3 (COA3) gene and myosin light chain 9 (MYL9) gene that might be biomarker gene in feed efficiency and meat quality in thigh muscle. The hypothesis of the current study was alteration feed efficiency in slow-growing chicken will impact meat quality especially in term of texture and flavor.
Project description:The aim of this study was to explore whether, and if so, how Bacillus subtilis KC1 can enhance the growth performance of broilers that have been adversely affected by Mycoplasma gallisepticum (MG) infection. A total of 96 1-day-old male broilers were randomly divided into 4 groups: the control group (basal diet), the MG group (basal diet + MG challenge), the Bacillus subtilis KC1 group (basal diet + Bacillus subtilis KC1 supplementation), the Bacillus subtilis KC1 + MG group (basal diet + Bacillus subtilis KC1 supplementation + MG challenge). The trial lasted 42 days, and the results showed that the MG group had significantly reduced body weight and average daily gain, as well as increased feed conversion ratio of broilers, compared to the control group. Dietary supplementation with Bacillus subtilis KC1 significantly improved the growth performance of MG-infected broilers. In addition, dietary supplementation with Bacillus subtilis KC1 significantly improved oxidative stress and inflammatory response markers, characterized by increased superoxide dismutase levels and reduced levels of malondialdehyde, interleukin-1β, and tumor necrosis factor-α. Furthermore, both metabolomics and transcriptomics analyses indicated that MG infection markedly disrupted amino acid metabolism in broilers, whereas Bacillus subtilis KC1 supplementation alleviated the abnormal amino acid metabolism caused by MG infection. These results suggested that Bacillus subtilis KC1 may alleviate the poor growth performance caused by MG infection in broilers by improving amino acid metabolism.
Project description:Despite the existence of a number of studies investigating the effect of insect meal on the growth performance of broilers, knowledge about the metabolic effects of insect meal in broilers is still scarce. Thus, the present study investigated the effect of partial replacement of soybean meal with Hermetia illucens (HI) larvae meal on the liver transcriptome, the plasma metabolome and the cecal microbiome in broilers. For the study, 72 male one-day-old Cobb 500 broilers were divided into three groups (n = 12) and fed three different diets with either 0% (HI0), 7.5% (HI7.5) or 15% (HI15) defatted HI meal for 35 d. While body weight (BW) gain, feed intake, and feed:gain ratio did not differ between groups, breast muscle weight, carcass yield and apparent ileal digestibility (AID) of 12 amino acids were higher in group HI15 than in group HI0 (P > 0.05). Indicators of α-diversity (Chao1 and Observed) in the cecal digesta were higher in groups HI15 and HI7.5 than in group HI0 (P < 0.05). The abundance of 5 families and 18 genera, all of which belonged to the Firmicutes phylum, in the cecal digesta differed among groups (P < 0.05). Concentrations of butyric acid, valeric acid and isobutyric acid in the cecal digesta were lower in group HI15 than in the other two groups (P > 0.05), whereas those of total and other short-chain fatty acids were not different between groups. Liver transcriptomics revealed a total of 70 and 61 differentially expressed transcripts between groups HI15 vs. HI0 and between groups HI7.5 vs HI0, respectively, (P > 0.05). Targeted metabolomics identified 138 metabolites, most of which were triglyceride species, being different between the three groups (FDR < 0.05). According to this study, dietary inclusion of HI larvae meal has no detrimental impact but increases breast muscle weight and carcass weight in broilers suggesting that HI larvae meal can be recommended as a sustainable alternative protein source for broilers.
Project description:Interactions among genomic loci have often been overlooked in genome-wide association studies, revealing the combinatorial effects of variants on phenotype or disease manifestation. Unexplained genetic variance, interactions amongst causal genes of small effects, and biological pathways could be identified using a network biology approach. The main objective of this study was to determine the genome-wide epistatic variants affecting feed efficiency traits [feed conversion ratio (FCR) and residual feed intake (RFI)] based on weighted interaction SNP hub (WISH-R) method. Herein, we detected highly interconnected epistatic SNP modules, pathways, and potential biomarkers for the FCR and RFI in Duroc and Landrace purebreds considering the whole population, and separately for low and high feed efficient groups. Highly interacting SNP modules in Duroc (1,247 SNPs) and Landrace (1,215 SNPs) across the population and for low feed efficient (Duroc - 80 SNPs, Landrace - 146 SNPs) and high feed efficient group (Duroc - 198 SNPs, Landrace - 232 SNPs) for FCR and RFI were identified. Gene and pathway analyses identified ABL1, MAP3K4, MAP3K5, SEMA6A, KITLG, and KAT2B from chromosomes 1, 2, 5, and 13 underlying ErbB, Ras, Rap1, thyroid hormone, axon guidance pathways in Duroc. GABBR2, GNA12, and PRKCG genes from chromosomes 1, 3, and 6 pointed towards thyroid hormone, cGMP-PKG and cAMP pathways in Landrace. From Duroc low feed efficient group, the TPK1 gene was found involved with thiamine metabolism, whereas PARD6G, DLG2, CRB1 were involved with the hippo signaling pathway in high feed efficient group. PLOD1 and SETD7 genes were involved with lysine degradation in low feed efficient group in Landrace, while high feed efficient group pointed to genes underpinning valine, leucine, isoleucine degradation, and fatty acid elongation. Some SNPs and genes identified are known for their association with feed efficiency, others are novel and potentially provide new avenues for further research. Further validation of epistatic SNPs and genes identified here in a larger cohort would help to establish a framework for modelling epistatic variance in future methods of genomic prediction, increasing the accuracy of estimated genetic merit for FE and helping the pig breeding industry.