Project description:Hepatoblastoma (HB) is the most common liver cancer in children, but few pre-treatment tumors have been molecularly profiled. Consequently, there are no validated prognostic or therapeutic biomarkers for HB patients. We report on molecular analysis of 88 clinically-annotated HB tumors. This analysis pointed to three risk-stratifying molecular subtypes—low, intermediate and high risk—that are characterized by differential activation of hepatic progenitor cell markers and metabolic pathways. High-risk tumors are characterized by high NFE2L2 activity and LIN28B, HMGA2, SALL4 and AFP expression, low let-7 expression and HNF1A activity, and high coordinated expression of oncofetal proteins and stem cell markers. Tests on a 35 HB validation set supported these genes as prognostic biomarkers.
Project description:Hepatoblastoma (HB) is the most common liver cancer in children, but few pre-treatment tumors have been molecularly profiled. Consequently, there are no validated prognostic or therapeutic biomarkers for HB patients. We report on molecular analysis of 88 clinically-annotated HB tumors. This analysis pointed to three risk-stratifying molecular subtypes—low, intermediate and high risk—that are characterized by differential activation of hepatic progenitor cell markers and metabolic pathways. High-risk tumors are characterized by high NFE2L2 activity and LIN28B, HMGA2, SALL4 and AFP expression, low let-7 expression and HNF1A activity, and high coordinated expression of oncofetal proteins and stem cell markers. Tests on a 35 HB validation set supported these genes as prognostic biomarkers.
Project description:A novel recombinant fusion protein (SAK-HV) significantly decreased the serum levels of both total cholesterol (TC) and triglyceride (TG) in apolipoprotein E-deficient (ApoE-/-) mice with hyperlipemia and remarkably ameliorated hepatic steatosis. Particularly, its lipid-lowering effect was significantly better than that of atorvastatin during the observation period of 2 weeks. We then collected the liver tissues of SAK-HV-treated ApoE-/- mice (n=7) and liver tissues of PBS-treated ApoE-/- mice to make the transcriptome chip, and analyze the lipid-lowering mechanism of SAK-HV in liver of ApoE-/- mice.
Project description:Hepatoblastoma (HB) is the most common liver cancer in children, but few pre-treatment tumors have been molecularly profiled. Consequently, there are no validated prognostic or therapeutic biomarkers for HB patients. We report on molecular analysis of 88 clinically-annotated HB tumors. This analysis pointed to three risk-stratifying molecular subtypes—low, intermediate and high risk—that are characterized by differential activation of hepatic progenitor cell markers and metabolic pathways. High-risk tumors are characterized by high NFE2L2 activity and LIN28B, HMGA2, SALL4 and AFP expression, low let-7 expression and HNF1A activity, and high coordinated expression of oncofetal proteins and stem cell markers. Tests on a 35 HB validation set supported these genes as prognostic biomarkers.
Project description:Hepatoblastoma (HB) cells display strong phenotypic heterogeneity with a major impact on drug response, but the underlying mechanisms are poorly understood. Here, we use a single-cell multi-omic strategy to unravel the molecular determinants of this plasticity. HB display a continuum of single-cell states between hepatocytic (scH), liver progenitor (scLP) and mesenchymal (scM) differentiation poles, with an intermediate scH/LP population bordering scLP and scH areas in spatial transcriptomics. Chromatin accessibility landscapes reveal the gene regulatory networks of each differentiation pole, and the sequence of transcription factor activation underlying cell state transitions. Single-cell mapping of somatic alterations reveals the clonal architecture of each tumor, showing that each genetic subclone displays its own range of cellular plasticity across differentiation poles. The most scLP subclones, overexpressing stem cell and DNA repair genes, proliferate faster after neo-adjuvant chemotherapy. These results highlight how the interplay of clonal evolution and epigenetic plasticity shapes the potential of HB subclones to respond to chemotherapy.
Project description:Central nervous system (CNS) resident cells such as microglia, oligodendrocytes and astrocytes are gaining increasing attention in respect to their contribution to CNS pathologies including Multiple Sclerosis (MS). Several studies have demonstrated the involvement of pro- inflammatory glial subsets in the pathogenesis and propagation of inflammatory events in MS and its animal models. However, it has only recently become clear that the underlying heterogeneity of astrocytes and microglia can not only drive inflammation, but also lead to its resolution through direct and indirect mechanisms. Failure of these tissue-protective mechanisms may potentiate disease and increase the risk of conversion to progressive stages of MS, for which currently available therapies are limited. Using proteomic analyses of cerebrospinal fluid specimens from MS patients in combination with experimental studies, we here identify Heparin-binding EGF-like growth factor (HB-EGF) as a central mediator of tissue-protective and anti-inflammatory effects important for the recovery from acute inflammatory lesions in CNS autoimmunity. Hypoxic conditions drive the rapid upregulation of HB-EGF by astrocytes during early CNS inflammation, while pro-inflammatory conditions suppress trophic HB-EGF signaling through epigenetic modifications. Finally, we demonstrate both anti-inflammatory and tissue-protective effects of HB-EGF in a broad variety of cell types in vitro and use intranasal administration of HB-EGF in acute and post-acute stages of neuroinflammation to attenuate disease in a preclinical mouse model of MS. Altogether, we identify astrocyte-derived HB-EGF and its epigenetic regulation as a novel modulator of autoimmune CNS inflammation and potential therapeutic target in MS.