Project description:Color is an important trait in nature, playing a role in selection and speciation. The most important colorants in crustaceans are carotenoids, which in complexes with carotenoid-binding proteins provide an astonishing variety of colors from red to violet. Over 350 species and subspecies of amphipods (Crustacea: Amphipoda) endemic to Lake Baikal exhibit an impressive variability of colors and coloration patterns. However, the mechanisms forming this diversity are underexplored. In this work, we analyze the coloration of two species of endemic Lake Baikal amphipods, Eulimnogammarus cyaneus and E. vittatus. These species are brightly colored and, even more importantly, characterized by intraspecific color variability. We showed that the color of either species strongly correlated with the abundance of two putative carotenoid-binding proteins (the relative abundance of these proteins was higher in blue or teal-colored animals than in the orange- or yellow-colored ones.). With LC-MS/MS, we were able to identifiy these proteins, which turned out to be similar to the pheromone/odorant-binding protein family.
2020-06-04 | PXD018516 | Pride
Project description:Transcriptome sequencing of cryptic species of Lake Baikal endemic amphipods (Crustacea: Amphipoda) of the genus Eulimnogammarus
Project description:Inheritance and plasticity of epigenetic divergence characterise early stages of speciation in an incipient cichlid species of an African crater lake.
2022-06-09 | GSE174120 | GEO
Project description:Endemic lake Baikal amphipods Raw sequence reads
Project description:Suppressing spurious cryptic transcription by a repressive intragenic chromatin state featuring trimethylated lysine 36 on histone H3 (H3K36me3) and DNA methylation is critical for maintaining self-renewal capacity in mouse embryonic stem cells. In yeast and nematodes, such cryptic transcription is elevated with age, and reducing the levels of age-associated cryptic transcription extends yeast lifespan. Whether cryptic transcription is also increased during mammalian aging is unknown. We show for the first time an age-associated elevation in cryptic transcription in several stem cell populations, including murine hematopoietic stem cells (mHSCs) and neuronal stem cells (NSCs) and human mesenchymal stem cells (hMSCs). Using DECAP-seq, we mapped and quantified age-associated cryptic transcription in hMSCs aged in vitro. Regions with significant age-associated cryptic transcription have a unique chromatin signature: decreased H3K36me3 and increased H3K4me1, H3K4me3, and H3K27ac with age. Furthermore, genomic regions undergoing such age-dependent chromatin changes resemble known promoter sequences and are bound by the promoter-associated protein TBP even in young cells. Hence, the more permissive chromatin state at intragenic cryptic promoters likely underlies the increase of cryptic transcription in aged mammalian stem cells.
2021-07-15 | GSE156406 | GEO
Project description:Endemic lake Baikal amphipods Transcriptome Shotgun Assembly project