Project description:Transcriptional profiling of Caco-2 cells co-cultured with Faecalibacterium prausnitzii DSM17677, Lactobacilus rhamnosus HN001, UV-killed F. prausnitzii, or no bacteria in an apical anaerobic environment for four hours.
Project description:Transcriptional profiling of Caco-2 cells co-cultured with Faecalibacterium prausnitzii DSM17677, Lactobacilus rhamnosus HN001, UV-killed F. prausnitzii, or no bacteria in an apical anaerobic environment for four hours. 2 colour microarray, reference design. Biological replicates: 6 per treatment group.
Project description:Trimethylamine (TMA) is an important gut microbial metabolite strongly associated with human disease. There are prominent gaps in our understanding of how TMA is produced from the essential dietary nutrient L-carnitine, particularly in the anoxic environment of the human gut where oxygen-dependent L-carnitine-metabolizing enzymes are likely inactive. Here, we elucidate the chemical and genetic basis for anaerobic TMA generation from the L-carnitine-derived metabolite γ-butyrobetaine (γbb) by the human gut bacterium Emergencia timonensis. We identify a set of genes upregulated by γbb and demonstrate that the enzymes encoded by the induced γbb utilization (bbu) gene cluster convert γbb to TMA. The key TMA-generating step is catalyzed by a previously unknown type of TMA-lyase enzyme that utilizes a flavin cofactor to catalyze a redox neutral transformation. We identify additional cultured and uncultured host-associated bacteria that possess the bbu gene cluster, providing insights into the distribution of anaerobic γbb metabolism. Lastly, we present genetic, transcriptional, and metabolomic evidence that confirms the relevance of this metabolic pathway in the human gut microbiota. These analyses indicate that the anaerobic pathway is a more substantial contributor to TMA generation from L-carnitine in the human gut than the previously proposed aerobic pathway. The discovery and characterization of the bbu pathway provides the critical missing link in anaerobic metabolism of L-carnitine to TMA, enabling investigation into the connection between this microbial function and human disease.
Project description:Bacterial degradation of the ubiquitous and persistent steroids is important for their removal from the environment, particularly for the endocrine disrupting steroid sex hormones. While aerobic bacteria use oxygenases to attack non-activated C-H/C-C bonds of the isoprenoid side chain or the steran skeleton of steroids, initial studies of steroid degradation in anaerobic bacteria suggested that water-dependent enzymes are involved in C-H hydroxylation and ring cleavage reactions. In anaerobic steroid catabolism, the hydrolytic enzymes involved in the cleavage of the steran ring system of the common intermediate androst-1,4-diene-3-one have remained unknown. Here, we have enriched a hydrolase from the cholesterol/nitrate grown Sterolibacterium denitrificans and from Escherichia coli after heterologous expression of its gene. It specifically cleaves the cyclic 1,3-diketone degradation intermediate of ring A, androsta-1,4,17-trione, to 1,17-dioxo-2,3-seco-androstan-3-oate (DSAO), a hallmark reaction of anaerobic steroid degradation. The highly conserved ring A hydrolase was identified in all known and many previously unknown steroid-degrading Proteobacteria. Using the enriched enzyme, we enzymatically produced the CoA ester of DSAO from the chemically synthesized androst-1-ene-3-one precursor, allowing the identification of subsequent metabolites involved in ring A degradation. The results obtained suggest the involvement of an additional hydrolase, an aldolase, and a -oxidation-like cascade for complete ring A degradation during which acetate and acetyl-CoA are released to form the three-ring 5,10-seco-1,2,3,4-tetranorandrosta-5,17-dione. The results identified a key enzyme of anaerobic steroid degradation that may serve as functional marker for monitoring steroid contaminant degradation at anoxic environmental sites.
Project description:Inhibition of the anaerobic digestion process through accumulation of volatile fatty acids (VFA) is a recurring problem which is the result of unbalanced growth between acidogenic bacteria and methanogens. A speedy recovery is essential for an establishment of a feasible economical biogas productions. Yet, little is known regarding the organisms participating in the recovery. In this study the organisms involved in the recovery were studied using protein-stable isotope probing (Protein-SIP) and mapping this data onto a binned metagenome. Under acetate-accumulated simulating conditions a formation of 13C-labeled CO2 and CH4 was detected immediately after the addition of [U-13C]acetate, indicative of a high turnover rate of acetate. Several labeled peptides were detected in protein-SIP analysis. These 13C-labeled peptides were mapped onto a binned metagenome for improved taxanomical classification of the organisms involved. The results revealed that Methanosarcina and Methanoculleus were actively involved in acetate turnover, as were five subspecies of Clostridia and one Bacteroidetes. The organisms affiliating with Clostridia and Bacteroidetes all contained the FTFHS gene for formyltetrahydrofolate synthetase, a key enzyme for reductive acetogenesis; indicating that these organisms are possible syntrophic acetate-oxidizing bacteria (SAOB) that can facilitate acetate consumption via syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis (SAO-HM). This study represents the first study applying protein-SIP for analysis of complex biogas samples, a promising method for identifying key microorganisms involved in specific pathways.