Project description:Transcriptional profiling of Caco-2 cells co-cultured with Faecalibacterium prausnitzii DSM17677, Lactobacilus rhamnosus HN001, UV-killed F. prausnitzii, or no bacteria in an apical anaerobic environment for four hours.
Project description:Transcriptional profiling of Caco-2 cells co-cultured with Faecalibacterium prausnitzii DSM17677, Lactobacilus rhamnosus HN001, UV-killed F. prausnitzii, or no bacteria in an apical anaerobic environment for four hours. 2 colour microarray, reference design. Biological replicates: 6 per treatment group.
Project description:Trimethylamine (TMA) is an important gut microbial metabolite strongly associated with human disease. There are prominent gaps in our understanding of how TMA is produced from the essential dietary nutrient L-carnitine, particularly in the anoxic environment of the human gut where oxygen-dependent L-carnitine-metabolizing enzymes are likely inactive. Here, we elucidate the chemical and genetic basis for anaerobic TMA generation from the L-carnitine-derived metabolite γ-butyrobetaine (γbb) by the human gut bacterium Emergencia timonensis. We identify a set of genes upregulated by γbb and demonstrate that the enzymes encoded by the induced γbb utilization (bbu) gene cluster convert γbb to TMA. The key TMA-generating step is catalyzed by a previously unknown type of TMA-lyase enzyme that utilizes a flavin cofactor to catalyze a redox neutral transformation. We identify additional cultured and uncultured host-associated bacteria that possess the bbu gene cluster, providing insights into the distribution of anaerobic γbb metabolism. Lastly, we present genetic, transcriptional, and metabolomic evidence that confirms the relevance of this metabolic pathway in the human gut microbiota. These analyses indicate that the anaerobic pathway is a more substantial contributor to TMA generation from L-carnitine in the human gut than the previously proposed aerobic pathway. The discovery and characterization of the bbu pathway provides the critical missing link in anaerobic metabolism of L-carnitine to TMA, enabling investigation into the connection between this microbial function and human disease.
Project description:Inhibition of the anaerobic digestion process through accumulation of volatile fatty acids (VFA) is a recurring problem which is the result of unbalanced growth between acidogenic bacteria and methanogens. A speedy recovery is essential for an establishment of a feasible economical biogas productions. Yet, little is known regarding the organisms participating in the recovery. In this study the organisms involved in the recovery were studied using protein-stable isotope probing (Protein-SIP) and mapping this data onto a binned metagenome. Under acetate-accumulated simulating conditions a formation of 13C-labeled CO2 and CH4 was detected immediately after the addition of [U-13C]acetate, indicative of a high turnover rate of acetate. Several labeled peptides were detected in protein-SIP analysis. These 13C-labeled peptides were mapped onto a binned metagenome for improved taxanomical classification of the organisms involved. The results revealed that Methanosarcina and Methanoculleus were actively involved in acetate turnover, as were five subspecies of Clostridia and one Bacteroidetes. The organisms affiliating with Clostridia and Bacteroidetes all contained the FTFHS gene for formyltetrahydrofolate synthetase, a key enzyme for reductive acetogenesis; indicating that these organisms are possible syntrophic acetate-oxidizing bacteria (SAOB) that can facilitate acetate consumption via syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis (SAO-HM). This study represents the first study applying protein-SIP for analysis of complex biogas samples, a promising method for identifying key microorganisms involved in specific pathways.