Project description:Acididesulfobacillus acetoxydans is an acidophilic sulfate reducer that can dissimilatory reduce nitrate to ammonia (DNRA). However, no known nitrite reductase is encoded. This study was performed to investigate how A. acetoxydans reduces nitrate to nitrite and elucidated a novel DNRA mechanism and potential nitrosative stress resistance mechanisms in acidophiles.
Project description:Dissimilatory sulfate reduction (DSR) mediated by sulfate-reducing microorganisms (SRMs) plays a pivotal role in global sulfur, carbon, oxygen, and iron cycles since ~3.5 billion years ago. The canonical DSR pathway is believed to be sulfate reduction to sulfide. Herein, we report a new DSR pathway in phylogenetically diverse SRMs through which zero-valent sulfur (ZVS) is directly generated. We identified that approximately 8.9% of sulfate reduction was directed toward ZVS with S8 as a predominant product, and the ratio of sulfate-to-ZVS could be changed with SRMs’ growth conditions, particularly the medium salinity. Further coculturing experiments and metadata analyses revealed that DSR-derived ZVS supported the growth of various ZVS-metabolizing microorganisms, highlighting this new pathway as an essential component of the sulfur biogeochemical cycle