Project description:The goal of our present work was to understand the influence parvovirus B19 infection may have on the thyroid hormone signaling pathway, as well as the nuclear receptors (NR) pathway overall. We demonstrated that B19 infection of CD36+ erythroid progenitor cells leads to downregulation of the thyroid hormone receptor α isoform. In addition to that we have shown that B19 infection modulates the expression of other members of the NR superfamily such as estrogen and retinoid receptors.
Project description:The goal of our present work was to understand the influence parvovirus B19 infection may have on the thyroid hormone signaling pathway, as well as the nuclear receptors (NR) pathway overall. We demonstrated that B19 infection of CD36+ erythroid progenitor cells leads to downregulation of the thyroid hormone receptor α isoform. In addition to that we have shown that B19 infection modulates the expression of other members of the NR superfamily such as estrogen and retinoid receptors. CD36+ cells (StemCell Technologies) were mock-infected or infected with B19, 48 hours post infection cells were collected, total RNA was isolated, and cDNA was obtained as described above. TaqMan® array human nuclear receptors fast 96-well plates obtained from Applied Biosystems (Carlsbad, CA) were utilized in order to assess the differences of 92 nuclear receptors’ expression in mock- and B19-infected CD36+ cells. Relative quantity (RQ) values were calculated using the 2-ΔΔCt method.
Project description:Human parvovirus B19 (B19V) infection can cause transient aplastic crisis, persistent viremia, and pure red-cell aplasia. In fetuses, B19V infection can result in non-immune hydrops fetalis and fetal death. To systematically investigate the interaction between B19V and erythoid progenetor cells (EPC), microarray was applied to systematically analyze the dynamic transcriptome of CD36+ EPCs during B19V infection.
Project description:Since targeting of specific pathogenic pathways may be more efficient than current unspecific heart failure treatment, we obtained genomewide expression profiles of a DCM subtype characterized by cardiac inflammation (DCMi) in association with parvovirus B19. This study was entirely based on RNA isolated from endomyocardial biopsies so far only rarely used for genomic expression profiling. Keywords: disease state analysis
Project description:Febrile patients PCR positive for H1N1 swine flu, seasonal H1N1 and seasonal H3N2 in nasal swabs and controls consisting of febrile patients with rhinovirus infection or febrile patients of non-viral etiology (nasal swabs PCR negative for common respiratory viruses and blood PCR negative for dengue and parvovirus B19) were assessed consecutively for global transcriptional changes in whole blood
Project description:Febrile patients PCR positive for H1N1 swine flu, seasonal H1N1 and seasonal H3N2 in nasal swabs and controls consisting of febrile patients with rhinovirus infection or febrile patients of non-viral etiology (nasal swabs PCR negative for common respiratory viruses and blood PCR negative for dengue and parvovirus B19) were assessed consecutively for global transcriptional changes in whole blood Peripheral whole blood collected in PAX-gene tubes and extracted for total RNA
Project description:Since targeting of specific pathogenic pathways may be more efficient than current unspecific heart failure treatment, we obtained genomewide expression profiles of a DCM subtype characterized by cardiac inflammation (DCMi) in association with parvovirus B19. This study was entirely based on RNA isolated from endomyocardial biopsies so far only rarely used for genomic expression profiling. Experiment Overall Design: Samples derived from 8 DCMi and 4 healthy control patients were hybridised onto Affymetrix U133 Plus arrays.