Project description:Human parvovirus B19 (B19V) infection can cause transient aplastic crisis, persistent viremia, and pure red-cell aplasia. In fetuses, B19V infection can result in non-immune hydrops fetalis and fetal death. To systematically investigate the interaction between B19V and erythoid progenetor cells (EPC), microarray was applied to systematically analyze the dynamic transcriptome of CD36+ EPCs during B19V infection.
Project description:The goal of our present work was to understand the influence parvovirus B19 infection may have on the thyroid hormone signaling pathway, as well as the nuclear receptors (NR) pathway overall. We demonstrated that B19 infection of CD36+ erythroid progenitor cells leads to downregulation of the thyroid hormone receptor α isoform. In addition to that we have shown that B19 infection modulates the expression of other members of the NR superfamily such as estrogen and retinoid receptors. CD36+ cells (StemCell Technologies) were mock-infected or infected with B19, 48 hours post infection cells were collected, total RNA was isolated, and cDNA was obtained as described above. TaqMan® array human nuclear receptors fast 96-well plates obtained from Applied Biosystems (Carlsbad, CA) were utilized in order to assess the differences of 92 nuclear receptors’ expression in mock- and B19-infected CD36+ cells. Relative quantity (RQ) values were calculated using the 2-ΔΔCt method.
Project description:The goal of our present work was to understand the influence parvovirus B19 infection may have on the thyroid hormone signaling pathway, as well as the nuclear receptors (NR) pathway overall. We demonstrated that B19 infection of CD36+ erythroid progenitor cells leads to downregulation of the thyroid hormone receptor α isoform. In addition to that we have shown that B19 infection modulates the expression of other members of the NR superfamily such as estrogen and retinoid receptors.
2012-11-04 | GSE42005 | GEO
Project description:Human Parvovirus B19 sequence from Cuba
Project description:Since targeting of specific pathogenic pathways may be more efficient than current unspecific heart failure treatment, we obtained genomewide expression profiles of a DCM subtype characterized by cardiac inflammation (DCMi) in association with parvovirus B19. This study was entirely based on RNA isolated from endomyocardial biopsies so far only rarely used for genomic expression profiling. Keywords: disease state analysis
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs.