Project description:This study is aimed to explore ssDNA virus diversity from virome obtained from the deep-water harbor in offshore area of Shanghai, China.
Project description:Human iPSCs and NSCs were engineered by AAVS1 and/or C13 safe-harbor TALENs which mediated targeted integration of various reporter genes at single or dual safe-harbor loci. Multiple clones of targeted human iPSCs were used to compare with parental untargeted NCRM5 iPSCs. Polyclonal targeted human NSCs were used to compare with their parental untargeted NCRM1NSCs or H9NSCs. Total RNA obtained from targeted human iPSCs or NSCs compared to untargeted control iPSCs or NSCs.
Project description:Bulk RNA-sequencing experiments were performed to analyze the transcriptomic effects of such integrations into two newly established genomic safe harbor sites. Jurkat and HEK293T cells were edited to integrate CMV-mRuby expressing cassette into Rogi2 genomic safe harbor site using Cas9 RNP
Project description:Although increasingly global, data-driven genomics and other 'omics'-focused research hold great promise for health discoveries, current research ethics review systems around the world challenge potential improvements in human health from such research. To overcome this challenge, we propose a 'Safe Harbor Framework for International Ethics Equivalency' that facilitates the harmonization of ethics review of specific types of data-driven international research projects while respecting globally transposable research ethics norms and principles. The Safe Harbor would consist in part of an agency supporting an International Federation for Ethics Review (IFER), formed by a voluntary compact among countries, granting agencies, philanthropies, institutions, and healthcare, patient advocacy, and research organizations. IFER would be both a central ethics review body, and also a forum for review and follow-up of policies concerning ethics norms for international research projects. It would be built on five principle elements: (1) registration, (2) compliance review, (3) recognition, (4) monitoring and enforcement, and (5) public participation. The Safe Harbor would create many benefits for researchers, countries, and the general public, and may eventually have application beyond (gen)omics to other areas of biomedical research that increasingly engage in secondary use of data and present only negligible risks.