Project description:An RNA-seq dataset obtained from neural fold-stage chicken (Gallus gallus, strain Special Black) embryos that were exposed to a pharmacologically-relevant alcohol concentration (52 mM for 90 min) or isotonic saline. The cranial headfolds were isolated 6 hours following the initial alcohol exposure. Following RNA isolation, cDNA synthesis, and quality assurance (20), paired-end reads (75 bp) were generated on an Illumina Genome Analyzer IIx (University of Wisconsin Biotechnology Center).
Project description:Used a DNA tag sequencing and mapping strategy called gene identification signature (GIS) analysis, in which 5' and 3' signatures of full-length cDNAs are accurately extracted into paired-end ditags (PETs) that are concatenated for efficient sequencing and mapped to genome sequences to demarcate the transcription boundaries of every gene. GIS analysis is potentially 30-fold more efficient than standard cDNA sequencing approaches for transcriptome characterization. Keywords: Paired End DiTags
Project description:Targeted paired-end sequencing of cDNA from unfragmented nascent RNA from exponentially growing S. cerevisiae cells was employed to obtain Pol II transcription elongation and splicing information from single transcripts. Nascent RNA was prepared from the yeast chromatin fraction (Carrillo Oesterreich, Preibisch, Neugebauer, Mol Cell 2010) or enriched from total RNA with polyadenylated RNA depletion. The nascent 3â end was labeled with a 3â DNA adaptor through ligation. A PCR with a forward primer in the first exon of select intron-containing genes amplifies nascent transcripts of specific genes and ensures sequencing adaptor attachment for paired-end sequencing. With this approach co-transcriptional splicing progression with distance from the intron end could be analyzed for 87 genes. Note that the unmapped and mapped data also include genes that did not pass the read coverage requirements in SMIT analysis. Nascent RNA profiles for mainly intron-containing genes were generated with paired-end sequencing with Illumina HiSeq technology.
Project description:Used a DNA tag sequencing and mapping strategy called gene identification signature (GIS) analysis, in which 5' and 3' signatures of full-length cDNAs are accurately extracted into paired-end ditags (PETs) that are concatenated for efficient sequencing and mapped to genome sequences to demarcate the transcription boundaries of every gene. GIS analysis is potentially 30-fold more efficient than standard cDNA sequencing approaches for transcriptome characterization. Keywords: Paired End DiTags 5 zebrafish tissues examined.
Project description:Sequencing of mononucleosomal DNA during asynchronous mitosis in Schizosaccharomyces pombe, Schizosaccharomyces octosporus, Schizosaccharomyces japonicus and Saccharomyces cerevisiae Samples from mononucleosomal DNA from asynchronous mitosis of four species of budding (Saccharomyces cerevisiae W303-1a) and fission yeasts (S. pombe wild type 972h-, S. octosporus CBS1804, S. japonicus var. japonicus ade12- FY53) were sequenced (Illumina Genome Analyzer IIx and HiSeq 2500) using the single read and paired end protocol.