Project description:RNA-seq reads from the selfing species Arabidopsis thaliana were produced from flowers to study the consequences of the transition from the ancestral state (outcrossing) to the derived state (selfing). This was done in the context of examining another species in the Arabidopsis genus (A. lyrata) and another species pair (Capsella rubella versus Capsella grandiflora, which are selfing and outcrossing, respectively). These samples were generated to complement part of this larger study. Briefly, the shift from outcrossing to selfing is common in flowering plants, but neither the genomic consequences nor the speed with which they appear are well understood. An excellent model for understanding the evolution of self fertilization is provided by Capsella rubella, which became self-compatible <200,000 years ago. We present a reference genome for the species, and compare RNA expression and polymorphism patterns between C. rubella and its outcrossing progenitor C. grandiflora. There is a clear shift in the expression of genes associated with flowering phenotypes; a similar shift is seen in the related genus Arabidopsis, where self-fertilization evolved about 1 million years ago. DNA sequence polymorphisms distinguishing the two Capsella species reveal rapid genome-wide relaxation of purifying selection in C. rubella but without a concomitant change in transposable element abundance. Overall, we document that the transition to selfing may be typified by shifts in expression for genes that function in pollen and flower development, along with a measurable reduction of purifying selection.
Project description:RNA-seq reads from the selfing species Arabidopsis thaliana were produced from flowers to study the consequences of the transition from the ancestral state (outcrossing) to the derived state (selfing). This was done in the context of examining another species in the Arabidopsis genus (A. lyrata) and another species pair (Capsella rubella versus Capsella grandiflora, which are selfing and outcrossing, respectively). These samples were generated to complement part of this larger study. Briefly, the shift from outcrossing to selfing is common in flowering plants, but neither the genomic consequences nor the speed with which they appear are well understood. An excellent model for understanding the evolution of self fertilization is provided by Capsella rubella, which became self-compatible <200,000 years ago. We present a reference genome for the species, and compare RNA expression and polymorphism patterns between C. rubella and its outcrossing progenitor C. grandiflora. There is a clear shift in the expression of genes associated with flowering phenotypes; a similar shift is seen in the related genus Arabidopsis, where self-fertilization evolved about 1 million years ago. DNA sequence polymorphisms distinguishing the two Capsella species reveal rapid genome-wide relaxation of purifying selection in C. rubella but without a concomitant change in transposable element abundance. Overall, we document that the transition to selfing may be typified by shifts in expression for genes that function in pollen and flower development, along with a measurable reduction of purifying selection. As part of a cross-species comparison of gene expression, RNA-seq data was generated in biological replication (2 replicates) from Arabidopsis thaliana at the floral stage. In total, two samples (biological replicates) were used. The reference strain was used for the experments (strain Col-0). Resulting data about gene expression was used as part of a larger study. The Capsella rubella and Capsella grandiflora data are included in GEO Series GSE45518.
Project description:RNA-seq reads from the outcrossing species Arabidopsis lyrata were produced from flowers to study the consequences of the transition from the ancestral state (outcrossing) to the derived state (selfing) that is observed in the sister species Arabidopsis thaliana. This was done in the context of examining another species pair (Capsella rubella versus Capsella grandiflora, which are selfing and outcrossing, respectively). These samples were generated to complement part of this larger study. Briefly, the shift from outcrossing to selfing is common in flowering plants, but neither the genomic consequences nor the speed with which they appear are well understood. An excellent model for understanding the evolution of self fertilization is provided by Capsella rubella, which became self-compatible <200,000 years ago. We present a reference genome for the species, and compare RNA expression and polymorphism patterns between C. rubella and its outcrossing progenitor C. grandiflora. There is a clear shift in the expression of genes associated with flowering phenotypes; a similar shift is seen in the related genus Arabidopsis, where self-fertilization evolved about 1 million years ago. DNA sequence polymorphisms distinguishing the two Capsella species reveal rapid genome-wide relaxation of purifying selection in C. rubella but without a concomitant change in transposable element abundance. Overall, we document that the transition to selfing may be typified by shifts in expression for genes that function in pollen and flower development, along with a measurable reduction of purifying selection.
Project description:RNA-seq reads from the outcrossing species Arabidopsis lyrata were produced from flowers to study the consequences of the transition from the ancestral state (outcrossing) to the derived state (selfing) that is observed in the sister species Arabidopsis thaliana. This was done in the context of examining another species pair (Capsella rubella versus Capsella grandiflora, which are selfing and outcrossing, respectively). These samples were generated to complement part of this larger study. Briefly, the shift from outcrossing to selfing is common in flowering plants, but neither the genomic consequences nor the speed with which they appear are well understood. An excellent model for understanding the evolution of self fertilization is provided by Capsella rubella, which became self-compatible <200,000 years ago. We present a reference genome for the species, and compare RNA expression and polymorphism patterns between C. rubella and its outcrossing progenitor C. grandiflora. There is a clear shift in the expression of genes associated with flowering phenotypes; a similar shift is seen in the related genus Arabidopsis, where self-fertilization evolved about 1 million years ago. DNA sequence polymorphisms distinguishing the two Capsella species reveal rapid genome-wide relaxation of purifying selection in C. rubella but without a concomitant change in transposable element abundance. Overall, we document that the transition to selfing may be typified by shifts in expression for genes that function in pollen and flower development, along with a measurable reduction of purifying selection. As part of a cross-species comparison of gene expression, RNA-seq data was generated in biological replication (2 replicates) from Arabidopsis lyrata at the floral stage. In total, two samples (biological replicates) were used. The reference strain was used for the experments (strain MN47). Resulting data about gene expression was used as part of a larger study. The Capsella rubella and Capsella grandiflora data are included in GEO Series GSE45518.
Project description:Arabidopsis thaliana is a well-established model system for the analysis of the basic physiological and metabolic pathways of plants. The presented model is a new semi-quantitative mathematical model of the metabolism of Arabidopsis thaliana. The Petri net formalism was used to express the complex reaction system in a mathematically unique manner. To verify the model for correctness and consistency concepts of network decomposition and network reduction such as transition invariants, common transition pairs, and invariant transition pairs were applied. Based on recent knowledge from literature, including the Calvin cycle, glycolysis and citric acid cycle, glyoxylate cycle, urea cycle, sucrose synthesis, and the starch metabolism, the core metabolism of Arabidopsis thaliana was formulated. Each reaction (transition) is experimentally proven. The complete Petri net model consists of 134 metabolites, represented by places, and 243 reactions, represented by transitions. Places and transitions are connected via 572 edges.
Project description:It has been reported that a number of small coding genes (30–100 amino acids) tend to be lineage-specifically emerged in evolution but such de-novo genes tend to be missed in genomes. Plant mitochondrial genomes might be fostering sources of de-novo genes because of a high rearrangement rate. However, the functional role of de-novo genes derived from mitochondria is unclear. Here, in the best model species of plants (Arabidopsis thaliana), we showed that Arabidopsis-specifically emerged de-novo genes derived from mitochondrial genome contributed to phenotypic variation in a species. We previously identified 49 candidates of small coding genes inducing abnormal morphological changes on overexpression in the nuclear genome. Among them, we focused on a candidate (sORF2146) potentially encoding 66 amino acids in large-scale intergenic genomic transferring region from mitochondrial genome. Comparative genome analysis showed that sORF2146 had been appeared in Arabidopsis lineage. Mitochondrial sORF2146 is fixed among A. thaliana ecotypes but nucleus sORF2146 is not fixed in A. thaliana ecotypes. After showing evidence that nucleus sORF2146 was transcribed and translated as a coding gene, we performed transcriptome analysis in transgenic plant overexpressing sORF2146. Genes associated with flowering transition are highly regulated in the transgenic plant. We then examined phenotypic effects of overexpression and knockdown transgenic plant. Overexpression and knockdown transgenic plant induce late and early flowering, respectively. Taken together, we conclude that a nucleus de-novo gene derived from mitochondria contributes to the variation of floral timing in Arabidopsis population.