Project description:Fasciola hepatica is a worldwide distributed zoonotic parasitic trematode, which causes a severe liver disease clinically known as fasciolasis in a large number of wild animals, several livestock species as well as humans, prevention and control of fasciolasis is made by massive use of anthelmintic compounds on livestock and inevitably this practice has led to the emergence of anthelmintic resistant Fasciola hepatica and there is a great scientific effort to elucidate the molecular basis of anthelmintic resistance of parasitic helminths in general and of Fasciola hepatica in particular that may lead to improved anthelmintic compounds. In our project, we sequenced the transcriptomes obtained from the anthelmintic response to Triclabendazole and Albendazole on four samples from sensitive and resistant strains of Fasciola hepatica on Illumina HiSeq 4000 Platform and generated about 10.03 Gb per sample. The average genome-mapping rate is 81.29% and the average gene-mapping rate is 62.81%. 30,105 genes were identified in which 28,669 of them are known genes and 1,237 of them are novel genes from novel coding transcripts without any known features, 20,743 novel RNA transcripts were identified of which 14,293 of them are previously unknown splicing event for known genes but no alternative splicing was detected, the remaining 5,213 transcripts were found to be long noncoding RNA.
Project description:The published finished human genome contained 340 gaps including 250 gaps in the euchromatic region. The reasons for these gaps were not fully understood, although subsequent analysis revealed that presence of segmentally duplicated sequences were a good predictor for the presence of gaps. However, not all segmentally duplicated regions contained gaps. We made a systemic effort to close euchromatic gaps and understand the nature of gap closing sequences. Our studies clearly demonstrate that the gap closing sequences analyzed were over 2.3-fold more enriched in segmental duplications and that about 40% of the gap closing sequences were structurally variant. The structural variant nature of gap closing sequences was verified by aCGH analysis, and by paired-end-sequence and fingerprint analysis of gap spanning clones from recently available human genome fosmid libraries from eight individuals. Identification and characterization of gap closing sequences provides an effective approach for closing the remaining euchromatic gaps in the human genome. Keywords: comparative genomic hybridization
Project description:The miRNome of Fasciola hepatica juveniles endorse the existence of a reduced set of highly divergent miRNAs in parasitic flatworms.