Project description:Amplification of small subunit rRNA sequences of trypanosomatids from human samples of a patient diagnosed with visceral leishmaniasis.
| PRJEB25906 | ENA
Project description:Amplification of tubulin partial sequences from Brazilian clinical isolates of Trypanosomatidae sp.
| PRJEB25558 | ENA
Project description:Amplification of ribosomal internal transcribed spacer 1 (ITS1) sequences from Brazilian clinical isolates of Trypanosomatidae sp.
Project description:Protists have traditionally been identified by cultivation and classified taxonomically based on their cellular morphologies and behavior. In the past decade, however, many novel protist taxa have been identified using cultivation independent ssu rRNA sequence surveys. New rRNA "phylotypes" from uncultivated eukaryotes have no connection to the wealth of prior morphological descriptions of protists. To link phylogenetically informative sequences with taxonomically informative morphological descriptions, we demonstrate several methods for combining whole cell rRNA-targeted fluorescent in situ hybridization (FISH) with cytoskeletal or organellar immunostaining. Either eukaryote or ciliate-specific ssu rRNA probes were combined with an anti-α-tubulin antibody or phalloidin, a common actin stain, to define cytoskeletal features of uncultivated protists in several environmental samples. The eukaryote ssu rRNA probe was also combined with Mitotracker® or a hydrogenosomal-specific anti-Hsp70 antibody to localize mitochondria and hydrogenosomes, respectively, in uncultivated protists from different environments. Using rRNA probes in combination with immunostaining, we linked ssu rRNA phylotypes with microtubule structure to describe flagellate and ciliate morphology in three diverse environments, and linked Naegleria spp. to their amoeboid morphology using actin staining in hay infusion samples. We also linked uncultivated ciliates to morphologically similar Colpoda-like ciliates using tubulin immunostaining with a ciliate-specific rRNA probe. Combining rRNA-targeted FISH with cytoskeletal immunostaining or stains targeting specific organelles provides a fast, efficient, high throughput method for linking genetic sequences with morphological features in uncultivated protists. When linked to phylotype, morphological descriptions of protists can both complement and vet the increasing number of sequences from uncultivated protists, including those of novel lineages, identified in diverse environments.
| S-EPMC3234254 | biostudies-literature
Project description:Amplification of glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) partial sequences from promastigote clones of Brazilian clinical isolates of Trypanosomatidae sp.
Project description:The continuous increase in sequenced genomes in public repositories makes the choice of interesting bacterial strains for future sequencing projects ever more complicated, as it is difficult to estimate the redundancy between these strains and the already available genomes. Therefore, we developed the Nextflow workflow "ORPER", for "ORganism PlacER", containerized in Singularity, which allows the determination the phylogenetic position of a collection of organisms in the genomic landscape. ORPER constrains the phylogenetic placement of SSU (16S) rRNA sequences in a multilocus reference tree based on ribosomal protein genes extracted from public genomes. We demonstrate the utility of ORPER on the Cyanobacteria phylum, by placing 152 strains of the BCCM/ULC collection.
Project description:BackgroundBlastocystis sp. is one of the most common enteric parasites of humans and animals worldwide. It is well recognized that this ubiquitous protist displays a remarkable degree of genetic diversity in the SSU rRNA gene, which is currently the main gene used for defining Blastocystis subtypes. Yet, full-length reference sequences of this gene are available for only 16 subtypes of Blastocystis in part because of the technical difficulties associated with obtaining these sequences from complex samples.MethodsWe have developed a method using Oxford Nanopore MinION long-read sequencing and universal eukaryotic primers to produce full-length (> 1800 bp) SSU rRNA gene sequences for Blastocystis. Seven Blastocystis specimens representing five subtypes (ST1, ST4, ST10, ST11, and ST14) obtained both from cultures and feces were used for validation.ResultsWe demonstrate that this method can be used to produce highly accurate full-length sequences from both cultured and fecal DNA isolates. Full-length sequences were successfully obtained from all five subtypes including ST11 for which no full-length reference sequence currently exists and for an isolate that contained mixed ST10/ST14.ConclusionsThe suitability of the use of MinION long-read sequencing technology to successfully generate full-length Blastocystis SSU rRNA gene sequences was demonstrated. The ability to produce full-length SSU rRNA gene sequences is key in understanding the role of genetic diversity in important aspects of Blastocystis biology such as transmission, host specificity, and pathogenicity.