Project description:RNA-seq analysis of the transcriptome of wild type C.jejuni NCTC11168, and of an rpoN mutant of the same strain, both grown in vitro. ArrayExpress Release Date: 2011-06-14 Publication Title: Quantitative RNA-seq analysis of the transcriptome of Campylobacter jejuni Publication Author List: Roy R. Chaudhuri, Lu Yu, Alpa Kanji, Timothy T. Perkins, Paul P. Gardner, Jyoti Choudhary, Duncan J. Maskell, Andrew J. Grant Person Roles: submitter Person Last Name: Chaudhuri Person First Name: Roy Person Mid Initials: R Person Email: roy.chaudhuri@gmail.com Person Phone: 441000000000 Person Address: Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom Person Affiliation: University of Cambridge
Project description:Campylobacter jejuni is the most common bacterial cause of foodborne disease in the developed world. Its general physiology and biochemistry, as well as the mechanisms enabling it to colonize and cause disease in various hosts, are not well understood, and new approaches are required to understand its basic biology. High-throughput sequencing technologies provide unprecedented opportunities for functional genomic research. Recent studies have shown that direct Illumina sequencing of cDNA (RNA-seq) is a useful technique for the quantitative and qualitative examination of transcriptomes. In this study we report RNA-seq analyses of the transcriptomes of C. jejuni (NCTC11168) and its rpoN mutant. This has allowed the identification of hitherto unknown transcriptional units, and further defines the regulon that is dependent on rpoN for expression. The analysis of the NCTC11168 transcriptome was supplemented by additional proteomic analysis using liquid chromatography-MS. The transcriptomic and proteomic datasets represent an important resource for the Campylobacter research community.
Project description:Campylobacter jejuni is the most prevalent cause of foodborne bacterial enteritis worldwide. This study aims at the characterisation of pathomechanisms and signalling in Campylobacter-induced diarrhoea in the human mucosa. During routine colonoscopy, biopsies were taken from patients suffering from campylobacteriosis. RNA-seq of colon biopsies was performed to describe Campylobacter jejuni-mediated effects. Mucosal mRNA profiles of acutely infected patients and healthy controls were generated by deep sequencing using Illumina HiSeq 2500. This data provide the basis for subsequent upstream regulator analysis.
Project description:Expression arrays comparing Campylobacter jejuni NCTC11168 during growth in the cecum of germ-free C57 BL/6 IL-10 knockout mice to C. jejuni NCTC11168 during growth in Bolton broth.
Project description:We report the use of differential RNA-sequencing for the determination of the primary transcriptome of wildtype Campylobacter jejuni NCTC 11168. This allows for the genome-wide determination of transcription start sites.
Project description:Campylobacter jejuni is a human pathogen which causes campylobacteriosis, one of the most widespread zoonotic enteric diseases worldwide. Most cases of sporadic C. jejuni infection occur through the handling or consumption of undercooked chicken meat, or cross-contamination of other foods with raw poultry fluid. A common practice to combat Campylobacter infection is to treat chickens with chlorine which kills the microbe. This analysis aimed to elucidate the transcriptomic response of Campylobacter jejuni treated with hypochlorite through Illumina sequencing. C. jejuni was grown and treated with hypochlorite. Samples were taken 5, 20 and 45 min after treatment for RNAseq analysis.The data generated were compared to the transcriptome pre-exposure to determine C. jejuni's response to hypochlorite.
Project description:Campylobacter jejuni is a major zoonotic pathogen transmitted to humans via the food chain. C. jejuni is prevalent in chickens, a natural reservoir for this pathogenic organism. Due to the importance of macrolide antibiotics in clinical therapy of human campylobacteriosis, development of macrolide resistance in Campylobacter has become a concern for public health.To facilitate understanding the molecular basis associated with the fitness difference between Erys and Eryr Campylobacter, we compared the transcriptomes between ATCC 700819 and its isogenic Eryr transformant T.L.101 using DNA microarray.
Project description:We report the use of differential RNA-sequencing for the determination of the primary transcriptome of the fur perR mutant of Campylobacter jejuni NCTC 11168. This allows for the genome-wide determination of transcription start sites.
Project description:Expression arrays comparing Campylobacter jejuni 11168 before and after serial passage in C57 BL/6 IL-10 deficient mice. Gene expression was compared during exponential growth in Bolton broth.