Project description:Full title: Probing the pan genome of a foodborne bacterial pathogen Listeria monocytogenes: Implications for its niche adaptation, pathogenesis, and evolution Listeria monocytogenes is a foodborne bacterial pathogen well known for adaptability to diverse environmental and host niches, and a high fatality rate among infected, immuno-compromised individuals. Three genetic lineages have been identified within this species. Strains of genetic lineages I and II account for more than ninety percent of foodborne disease outbreaks worldwide, whereas strains from genetic lineage III are rarely implicated in human infectious for unknown, yet intriguing, reasons. Here we have probed the genomic diversity of 26 L. monocytogenes strains using both whole-genome sequences and a novel 385,000 probe pan-genome microarray, fully tiling the genomes of 20 representative strains. Using these methods to identify genes highly conserved in lineages I and II but rare in lineage III, we have identified 86 genes and 8 small RNAs that play roles in bacterial stress resistance, pathogenicity, and niche, potentially explaining the predominance of L. monocytogenes lineages I and II in foodborne disease outbreaks. Extending gene content analysis to all lineages revealed a L. monocytogenes core genome of approximately 2,350 genes (80% of each individual genome) and a pan-genomic reservoir of >4,000 unique genes. Combined gene content data from both sequences and arrays was used to reconstruct an informative phylogeny for the L. monocytogenes species that confirms three distinct lineages and describes the relationship of 9 new lineage III genomes. Comparative analysis of 18 fully sequenced L. monocytogenes lineage I and II genomes shows a high level of genomic conservation and synteny, indicative of a closed pan-genome, with moderate domain shuffling and sequence drift associated with bacteriophages is present in all lineages. In contrast with lineages I and II, notable genomic diversity and characteristics of an open pan-genome were observed in the lineage III genomes, including many strain-specific genes and a more complex conservation pattern. This indicates that the L. monocytogenes pan-genome has not yet been fully sampled by genome sequencing, and additional sequencing of lineage III genomes is necessary to survey the full diversity of this intriguing species and reveal its mechanisms for adaptability and virulence. This is a Listeria monocytogenes pan-genome tilling array designed using PanArray algorithm. 9 experimental strains (F2-569, M1-002, F2-208, J2-071, J1-208, W1-111, W1-110, F2-524, F2-501) vs reference (EGD-e) strain.
Project description:Full title: Probing the pan genome of a foodborne bacterial pathogen Listeria monocytogenes: Implications for its niche adaptation, pathogenesis, and evolution Listeria monocytogenes is a foodborne bacterial pathogen well known for adaptability to diverse environmental and host niches, and a high fatality rate among infected, immuno-compromised individuals. Three genetic lineages have been identified within this species. Strains of genetic lineages I and II account for more than ninety percent of foodborne disease outbreaks worldwide, whereas strains from genetic lineage III are rarely implicated in human infectious for unknown, yet intriguing, reasons. Here we have probed the genomic diversity of 26 L. monocytogenes strains using both whole-genome sequences and a novel 385,000 probe pan-genome microarray, fully tiling the genomes of 20 representative strains. Using these methods to identify genes highly conserved in lineages I and II but rare in lineage III, we have identified 86 genes and 8 small RNAs that play roles in bacterial stress resistance, pathogenicity, and niche, potentially explaining the predominance of L. monocytogenes lineages I and II in foodborne disease outbreaks. Extending gene content analysis to all lineages revealed a L. monocytogenes core genome of approximately 2,350 genes (80% of each individual genome) and a pan-genomic reservoir of >4,000 unique genes. Combined gene content data from both sequences and arrays was used to reconstruct an informative phylogeny for the L. monocytogenes species that confirms three distinct lineages and describes the relationship of 9 new lineage III genomes. Comparative analysis of 18 fully sequenced L. monocytogenes lineage I and II genomes shows a high level of genomic conservation and synteny, indicative of a closed pan-genome, with moderate domain shuffling and sequence drift associated with bacteriophages is present in all lineages. In contrast with lineages I and II, notable genomic diversity and characteristics of an open pan-genome were observed in the lineage III genomes, including many strain-specific genes and a more complex conservation pattern. This indicates that the L. monocytogenes pan-genome has not yet been fully sampled by genome sequencing, and additional sequencing of lineage III genomes is necessary to survey the full diversity of this intriguing species and reveal its mechanisms for adaptability and virulence.
Project description:Failure of adoptive T cell therapies in cancer patients is linked to limited T cell expansion and persistence, even in memory-prone 41BB-(BBz)-based chimeric antigen receptor (CAR) T cells. In murine CD8+ T cells, SUV39H1 promotes differentiation and expansion of effector CD8+ T cells during acute infection by Listeria monocytogenes by silencing stemness and memory genes (Pace et al. Science, 2018). The purpuse of this study is to investigate the transcriptomic differences of SUV39H1 knock-out versus mock human 41BBz-CAR T cells by Nanostring at different cycles of restimulation.