Project description:Full title: Probing the pan genome of a foodborne bacterial pathogen Listeria monocytogenes: Implications for its niche adaptation, pathogenesis, and evolution Listeria monocytogenes is a foodborne bacterial pathogen well known for adaptability to diverse environmental and host niches, and a high fatality rate among infected, immuno-compromised individuals. Three genetic lineages have been identified within this species. Strains of genetic lineages I and II account for more than ninety percent of foodborne disease outbreaks worldwide, whereas strains from genetic lineage III are rarely implicated in human infectious for unknown, yet intriguing, reasons. Here we have probed the genomic diversity of 26 L. monocytogenes strains using both whole-genome sequences and a novel 385,000 probe pan-genome microarray, fully tiling the genomes of 20 representative strains. Using these methods to identify genes highly conserved in lineages I and II but rare in lineage III, we have identified 86 genes and 8 small RNAs that play roles in bacterial stress resistance, pathogenicity, and niche, potentially explaining the predominance of L. monocytogenes lineages I and II in foodborne disease outbreaks. Extending gene content analysis to all lineages revealed a L. monocytogenes core genome of approximately 2,350 genes (80% of each individual genome) and a pan-genomic reservoir of >4,000 unique genes. Combined gene content data from both sequences and arrays was used to reconstruct an informative phylogeny for the L. monocytogenes species that confirms three distinct lineages and describes the relationship of 9 new lineage III genomes. Comparative analysis of 18 fully sequenced L. monocytogenes lineage I and II genomes shows a high level of genomic conservation and synteny, indicative of a closed pan-genome, with moderate domain shuffling and sequence drift associated with bacteriophages is present in all lineages. In contrast with lineages I and II, notable genomic diversity and characteristics of an open pan-genome were observed in the lineage III genomes, including many strain-specific genes and a more complex conservation pattern. This indicates that the L. monocytogenes pan-genome has not yet been fully sampled by genome sequencing, and additional sequencing of lineage III genomes is necessary to survey the full diversity of this intriguing species and reveal its mechanisms for adaptability and virulence. This is a Listeria monocytogenes pan-genome tilling array designed using PanArray algorithm. 9 experimental strains (F2-569, M1-002, F2-208, J2-071, J1-208, W1-111, W1-110, F2-524, F2-501) vs reference (EGD-e) strain.
Project description:This study will evaluate the safety and tolerability of a personalized live, attenuated, double-deleted Listeria monocytogenes (pLADD) treatment in adults with metastatic colorectal cancer.
Project description:Full title: Probing the pan genome of a foodborne bacterial pathogen Listeria monocytogenes: Implications for its niche adaptation, pathogenesis, and evolution Listeria monocytogenes is a foodborne bacterial pathogen well known for adaptability to diverse environmental and host niches, and a high fatality rate among infected, immuno-compromised individuals. Three genetic lineages have been identified within this species. Strains of genetic lineages I and II account for more than ninety percent of foodborne disease outbreaks worldwide, whereas strains from genetic lineage III are rarely implicated in human infectious for unknown, yet intriguing, reasons. Here we have probed the genomic diversity of 26 L. monocytogenes strains using both whole-genome sequences and a novel 385,000 probe pan-genome microarray, fully tiling the genomes of 20 representative strains. Using these methods to identify genes highly conserved in lineages I and II but rare in lineage III, we have identified 86 genes and 8 small RNAs that play roles in bacterial stress resistance, pathogenicity, and niche, potentially explaining the predominance of L. monocytogenes lineages I and II in foodborne disease outbreaks. Extending gene content analysis to all lineages revealed a L. monocytogenes core genome of approximately 2,350 genes (80% of each individual genome) and a pan-genomic reservoir of >4,000 unique genes. Combined gene content data from both sequences and arrays was used to reconstruct an informative phylogeny for the L. monocytogenes species that confirms three distinct lineages and describes the relationship of 9 new lineage III genomes. Comparative analysis of 18 fully sequenced L. monocytogenes lineage I and II genomes shows a high level of genomic conservation and synteny, indicative of a closed pan-genome, with moderate domain shuffling and sequence drift associated with bacteriophages is present in all lineages. In contrast with lineages I and II, notable genomic diversity and characteristics of an open pan-genome were observed in the lineage III genomes, including many strain-specific genes and a more complex conservation pattern. This indicates that the L. monocytogenes pan-genome has not yet been fully sampled by genome sequencing, and additional sequencing of lineage III genomes is necessary to survey the full diversity of this intriguing species and reveal its mechanisms for adaptability and virulence.
2010-04-06 | GSE20367 | GEO
Project description:Hybrid genomes of Listeria monocytogenes
Project description:Several Toll-like receptors are activated by Listeria monocytogenes infection, resulting in the activation of MyD88 dependent signaling pathway. However, the negative role of MyD88 in gene expresson is unclear. To address this, we performed microarray analysis of mRNAs from WT or MyD88-/- peritoneal macrophages infected with Listeria monocytogenes.
Project description:DNA damage response kinase ATM regulates the genetic program of lymphocytes with phsiologically induced DNA DSBs. In bone marrow-derived macrophages, related kinase DNAPKcs is also responsible for activating DNA damage responses after infection with Listeria monocytogenes. Here we show that both ATM and DNA-PKcs regulate the genetic program of Listeria monocytogenes-infected macrophages.
Project description:Transcriptional profling of a Listeria monocytogenes under nisin treatment comparing ctsR mutant and wild type one condition (nisin treament 20ug/ml, 24 hours) experiment, ctsR mutant vs. wild type Listeria monocytogenes Scott A, 2 biological replicates, 4 technical replicates
Project description:DNA damage response kinase ATM regulates the genetic program of lymphocytes with phsiologically induced DNA DSBs. In bone marrow-derived macrophages, related kinase DNAPKcs is also responsible for activating DNA damage responses after infection with Listeria monocytogenes. Here we show that both ATM and DNA-PKcs regulate the genetic program of Listeria monocytogenes-infected macrophages. Two independent bone marrow-derived macrophage cultures for each genotype (LysMcre/+ and Scid: Atmc/c: LysMcre/+) were infected with Listeria monocytogenes for 24 hrs at an MOI of 5. RNA was isolated using RNeasy (Qiagen). Gene expression profiling was performed using Illumina MouseRef-8 expression microarrays.