Project description:Placental insufficiency is implicated in spontaneous preterm birth (SPTB). We performed RNA-seq study in male and female placentas from women (African American, self-identified) with SPTB (< 36 weeks gestation) compared to normal pregnancies (≥ 38 weeks gestation) to assess the alterations in gene expression profiles.
Project description:Preterm birth, defined as birth <37 weeks of gestation, is a leading cause of infant morbidity and mortality. In the United States, approximately 12% of all births are preterm.1 Despite decades of research, there has been little progress in developing effective interventions to prevent preterm birth. In fact, the rate of preterm birth has increased slightly over the last several decades.2 The ultimate goal of the Genomic and Proteomic Network for Preterm Birth Research (GPN-PBR) is to identify possible biomarkers that could predict the susceptibility to spontaneous preterm birth (SPTB) as well as to shed light on the molecular mechanisms involved in its etiologies. Understanding those mechanisms will help us predict SPTB and may facilitate the introduction of more effective prevention and treatment strategies.
Project description:Genome wide placental DNA methylation profiling of full term and preterm deliveries sampled from 5 full term deliveries and 4 preterm deliveries. The Illumina HumanMethylation450 Beadchip was used to obtain DNA methylation profiles across approximately 485,577 CpGs in formalin fixed samples. Samples included 4 placental tissues from 4 women with preterm delivery and 5 placental tissues from 5 women with full term delivery. 9 women's placental DNA (4 women had perterm deliveries and 5 women had full term deliveries) were hybridised to the Illumina HumanMethylation450 Beadchip
Project description:Preterm birth is a main determinant of neonatal mortality and morbidity and a major contributor to the overall mortality and burden of disease. However, precise phenotyping of the preterm birth is hampered by the imprecise definition of the clinical phenotype and complexity of the molecular phenotype due to multiple pregnancy tissue types and molecular processes that may contribute to the preterm birth. The studyâ??s aim was to comprehensively evaluate the mRNA transcriptome that characterizes preterm and term labor using precisely phenotyped samples. Expression profiles of 73 genes and non-coding RNA sequences uniquely identified the four groups of patients: delivering preterm with (PL) and without labor (PNL), term with (TL) and without labor (TNL). The largest differences in gene expression among the four groups occurred in decidua, chorion and amnion. The gene expression profiles showed suppression of chemokines expression in TNL, withdrawal of this suppression in TL, activation of multiple pathways of inflammation in PL, and an immune rejection profile in PNL. The genes constituting expression signatures showed over-representation of three putative regulatory elements in their 5â?? and 3â??UTR regions. The results suggest that pregnancy is maintained by downregulation of chemokines at the maternal-fetal interface. Withdrawal of this downregulation results in the term birth and its overriding by the activation of multiple pathways of the immune system in the preterm birth. Complications of the pregnancy associated with impairment of placental function, which necessitated premature delivery of the fetus in the absence of labor, show gene expression patterns associated with immune rejection. 183 total RNA samples from 8 tissue types collected from 35 women grouped into six categories of pregnancy outcome. One microarray replicate per sample. Other Contributors: Radek Bukowski, Sam Parry and the NICHD Genomic and Proteomic Network for Preterm Birth Research
Project description:Genome wide placental DNA methylation profiling of full term and preterm deliveries sampled from 5 full term deliveries and 4 preterm deliveries. The Illumina HumanMethylation450 Beadchip was used to obtain DNA methylation profiles across approximately 485,577 CpGs in formalin fixed samples. Samples included 4 placental tissues from 4 women with preterm delivery and 5 placental tissues from 5 women with full term delivery.
Project description:Preterm birth is the major cause of newborn and infant mortality affecting nearly one in every ten live births. This study was designed to develop an epigenetic biomarker for susceptibility of preterm birth using buccal cells from the mother, father, and child (triads). MeDIP-seq was used to identify differential DNA methylation regions (DMRs) using a comparison of control term birth versus preterm birth triads. Epigenetic DMR associations with preterm birth were identified for both the mother and father that were distinct and suggest potential epigenetic contributions from both parents. The mother (165 DMRs) and female child (136 DMRs) at p<1e-04 had the highest number of DMRs and were highly similar suggesting potential epigenetic inheritance of the epimutations. The male child had negligible DMR associations. The DMR associated genes for each group involve previously identified preterm birth associated genes.