Project description:The purpose of this study is to determine the safety and maximum tolerated dose from injecting this vaccinia virus into tumors or infusion.
Project description:Viral infection both activates stress signaling pathways and redistributes ribosomes away from host mRNAs to translate viral mRNAs. The intricacies of this ribosome shuffle from host to viral mRNAs are poorly understood Here, we uncover a role for the ribosome associated quality control (RQC) factor, ZNF598, during vaccinia virus mRNA translation. ZNF598 acts on collided ribosomes to ubiquitylate 40S subunit proteins uS10 and eS10 initiating RQC-dependent nascent chain degradation and ribosome recycling We show that vaccinia infection in human cells enhances uS10 ubiquitylation indicating an increased burden on RQC pathways during viral propagation. Consistent with an increased RQC demand, we demonstrate that vaccinia virus replication is impaired in cells which either lack ZNF598 or express a ubiquitylation deficient version of uS10 Using SILAC-based proteomics and concurrent RNAseq analysis, we determine that translation and not transcription of vaccinia virus mRNAs is compromised in cells with deficient RQC activity. Additionally, vaccinia virus infection reduces cellular RQC activity, suggesting that co-option of ZNF598 by vaccinia virus plays a critical role in translational reprogramming that is needed for optimal viral propagation.
Project description:Primary human astrocytes were infected with either monkeypox virus (MPXV clade IIb lineage), vaccinia virus (VACV: Acambis 2000), or controls (MC=monkeypox control, AC = Vaccinia control) at an MOI of 10 for 6 h. Samples (n=4) were analyzed by LC-MS/MS with label-free quantification where the data was acquired by data-dependent acquisition (DDA).