Project description:Leaf tissues harvested from 50 two-week-old rice seedlings of bZIP73Jap::Flag OE lines were immediately fixed with 1% formaldehyde for chromatin isolation. DNA was extracted immunoprecipitated using anti-Flag antibodies, and the precipitated DNA was purified using the PCR Purification Kit (Qiagen, Germany). Raw genome DNA was used as input. Both input and ChIP DNA samples were sequenced twice.
Project description:To reveal the underlying molecular mechanism of Gif1 action in the control of grain filling and yield improvement, we performed transcriptional profiling of wild type Zhonghua11 and mutant gif1 plants in early filling stage on a global scale using the Affymetrix GeneChip Rice Genome Array Experiment Overall Design: Rice caryopsis were harvested in 7 days after flowering and three biological repeats were performed on Zhonghua11 (wild-type) and gif1 (mutant), respectively.
Project description:In this study, we provide a global overview of genome-wide OsHOX24 binding sites in rice under control and desiccation stress conditions in wild-type and OsHOx24 overexpressing rice plants (H49 line) via chromatin immunoprecipitation sequencing (ChIP-sequencing) approach. We identified numerous downstream targets of OsHOX24 under desiccation stress and control by analyzing the comprehensive binding site map of OsHOX24 at whole genome level in rice.
Project description:To reveal the underlying molecular mechanism of Gif1 action in the control of grain filling and yield improvement, we performed transcriptional profiling of wild type Zhonghua11 and mutant gif1 plants in early filling stage on a global scale using the Affymetrix GeneChip Rice Genome Array Keywords: Filling stage
Project description:A tandem mass tag (TMT)-based comparative peptidomics analysis of rice seedlings under salt stress was conducted. Rice seedlings were exposed to 50 and 150 mM NaCl for 24 and 72 h, respectively, and the root and shoot tissues of different treatment groups were collected separately for the peptidomic analysis.