Project description:Our group recently transcriptomically characterized coculture growth between Streptococcus mutans and several species of commensal streptococci (Rose et al, 2023; Choi et al 2024). One interaction that stood out was with Streptococcus mitis ATCC 49456, which completely inhibited the growth of S. mutans during biofilm formation. This is due to abudant hydrogen peroxide production by S. mitis ATCC 49456, 3-5x higher than other oral commensal streptococci we have worked with. To understand how the transcriptome of S. mutans is modified in coculture with a high hydrogen peroxide producer, we evaluated the transcriptome during monoculture or coculture growth between the two strains. Our results show differential gene expression (DEGs) in S. mutans that follows other trends we have documented previously with other commensal Streptococcus species, as well as DEGs specific to the interaction with S. mitis.
Project description:Immune responses to group A streptococcus in humans can lead to the development of acute rheumatic fever and rheumatic heart disease. Immune pathways that are activated by group A streptococcus are potential targets for inhibiting autoimmune responses to group A streptococcus. This experiment tests the impact of the drug hydroxychloroquine on immune responses to group A streptococcus in peripheral blood mononuclear cells
Project description:Treatment of pneumococcal infections is limited by antibiotic resistance and exacerbation of disease by bacterial lysis releasing pneumolysin toxin and other inflammatory factors. We identified a novel peptide in the Klebsiella pneumoniae secretome, which enters Streptococcus pneumoniae via its AmiA-AliA/AliB permease. Subsequent downregulation of genes for amino acid biosynthesis and peptide uptake was associated with reduction of pneumococcal growth in defined medium and human cerebrospinal fluid, irregular cell shape, decreased chain length and decreased genetic transformation. The bacteriostatic effect was specific to S. pneumoniae and Streptococcus pseudopneumoniae with no effect on Streptococcus mitis, Haemophilus influenzae, Staphylococcus aureus or K. pneumoniae. Peptide sequence and length were crucial to growth suppression. The peptide reduced pneumococcal adherence to primary human airway epithelial cell cultures and colonization of rat nasopharynx, without toxicity. We also analysed the effect of peptide on the proteome of S. pneumoniae. We found alteration of the proteome by the peptide with some proteins turned on or off in line with the transcriptomic changes. We therefore identified a peptide with potential as a therapeutic for pneumococcal diseases suppressing growth of multiple clinical isolates, including antibiotic resistant strains, while avoiding bacterial lysis and dysbiosis.
Project description:In the oral biofilm, the mitis streptococci are among the first group of organisms to colonize the tooth surface. Their proliferation is thought to be an important factor required for antagonizing the growth of cariogenic species such as Streptococcus mutans. In this study, we used a 3-species mixed culture to demonstrate that another ubiquitous early colonizing species, Veillonella parvula, could greatly impact the competitive outcome of a mixed culture of S. mutans and S. gordonii. Transcriptome analysis further revealed that S. mutans responds differentially to its friend (V. parvula) and foe (S. gordonii). In the mixed culture with S. gordonii, all but one S. mutans sugar uptake and metabolic genes were down-regulated, while genes for alternative energy source utilization and H2O2 tolerance were up-regulated, resulting in a slower but persistent growth. In contrast, when cultured with V. parvula, S. mutans grew equally well or better than in monoculture and exhibited relatively few changes within its transcriptome. When V. parvula was introduced into the mixed culture of S. mutans and S. gordonii, it rescued the growth inhibition of S. mutans. In this 3-species environment, S. mutans increased the expression of genes required for the uptake and metabolism of minor sugars, while genes required for oxidative stress tolerance were down-regulated. We conclude that the major factors affecting the competition between S. mutans and S. gordonii are carbohydrate utilization and H2O2 resistance. The presence of V. parvula in the tri-species culture mitigates these two major factors and allows S. mutans to proliferate, despite the presence of S. gordonii.
Project description:Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. In this study,we evaluated the genetic difference of 40 Streptococcus suis strains belonging to various sequence types by comparative genomic hybridization to identify genes associated with the variation in pathogenicity using NimbleGen’s tilling microarray platform. Application of Comparative Phylogenomics to Identify Genetic Differences Relating to Pathogenicity of Streptococcus suis
Project description:We report the characterization of the major regulator of virulence gene expression (CovR) in Group B Streptococcus. The ChIP-seq experiments define the binding of CovR on the chromosome of the BM110 strain, a representative of the hypervirulent GBS lineage responsible of neonatal meningitis. Regulatory evolution of CovR signaling was investigated by comparing ChIP-seq done in parallel in a second GBS clinical isolate (NEM316) not belonging to the hypervirulent lineage.