Project description:Long-read sequencing technologies such as Iso-Seq (PacBio Inc.) generate highly accurate sequences of full-length mRNA transcript isoforms. Long-read transcriptomics may be especially useful in the context of lymphocyte functional plasticity as it relates to human health and disease. However, no long-read isoform-aware reference transcriptomes of human circulating lymphocytes seem to be publicly available despite being valuable as benchmarks in a variety of transcriptomic studies. To begin to fill this gap, we purified four lymphocyte subsets (CD4 T, CD8 T, NK, and Pan B cells) from the peripheral blood of a healthy male donor and obtained high-quality RNA (RIN>8) for PacBio Iso-Seq analysis and parallel RNA-Seq analysis.
Project description:Long-read sequencing technologies such as Iso-Seq (PacBio Inc.) generate highly accurate sequences of full-length mRNA transcript isoforms. Long-read transcriptomics may be especially useful in the context of lymphocyte functional plasticity as it relates to human health and disease. However, no long-read isoform-aware reference transcriptomes of human circulating lymphocytes seem to be publicly available despite being valuable as benchmarks in a variety of transcriptomic studies. To begin to fill this gap, we purified four lymphocyte subsets (CD4 T, CD8 T, NK, and Pan B cells) from the peripheral blood of a healthy male donor and obtained high-quality RNA (RIN>8) for PacBio Iso-Seq analysis and parallel RNA-Seq analysis.
Project description:Full-Length cDNA transcriptome (Iso-Seq) data sequenced on the PacBio Sequel system using 2.1 chemistry. Multiplexed cDNA library of 12 samples (3 tissues x 4 strains). Tissues: root, embryo, endosperm. Strains: B73, Ki11, B73xKi11, Ki11xB73.
Project description:STAMBPL1 plays a previously unappreciated role in post-transcriptional regulation, especially in RNA splicing pathways. Thus, PacBio long-read iso-sequencing was performed to acquire a high-precision transcription landscape after STAMBPL1 knockingdown in Huh7 cells
Project description:We used PacBio data to identify more reliable transcripts from hESC, based on which we can estimate gene/transcript abundance better from Illumina data. PacBio long reads and Illumina short reads were generated from the same hESC cell line H1. PacBio reads were error-corrected by Illumina reads to identify transcripts. rSeq is used to estimate gene/transcript abundance of the identified transcriptome.
Project description:In this study we were interested in identifying the gene networks that are responsive to chronic heat treatment in a switchgrass cultivar that is widely grown in the south-western USA and where 38C day temperatures have been reported for more than 100 days in the recent years. Switchgrass Alamo plants were subjected to chronic heat stress for 50 days (38 C/30C; day/night) or maintained under optimal conditions (28C/20C). Leaves were collected at the end of the heat regime for transcriptome analysis.
Project description:Purpose: Increasing biomass yield and quality of feedstock have been a recent interest in switchgrass research. Despite the economic importance of switchgrass, increasing temperature and water deficit are limiting factors to the cultivation of bioenergy crops in the semi-arid areas. The effect of individual drought or heat stress has been studied separately in switchgrass. However, there is relatively limited or no report on the molecular basis of combined abiotic stress tolerance in switchgrass particularly the combination of drought and heat stress. We used RNA-Seq approaches to elucidate the transcriptome changes of switchgrass in response to drought and high temperatures simultaneously. Method: We conducted solely drought treatment in switchgrass plant Alamo AP13 by withholding water after 45 days of growing. For the combination of drought and heat effect, heat treatment (35 °C/25 °C day/night) was imposed after 72 h of the initiation of drought. Samples were collected at 0 h, 72 h, 96 h, 120 h, 144 h, and 168 h after treatment imposition, total RNA was extracted, and RNA-Seq conducted. Results:Out of total 32,190 genes, we identified 3,912, as DT responsive genes, 2,339 and 4,635 as , heat (HT) and drought and heat (DTHT) responsive genes, respectively. There were 209, 106, and 220 transcription factors (TFs) differentially expressed under DT, HT and DTHT respectively Conclusion: Through RNA-Seq analysis, we have identified unique and overlapping genes in response to DT and combined DTHT stress in switchgrass. The combination of DT and HT stress may affect the photosynthetic machinery and phenylpropanoid pathway of switchgrass which negatively impacts lignin synthesis and biomass production of switchgrass. The biological function of genes identified particularly in response to DTHT stress could further be confirmed by techniques such as single point mutation or RNAi.
Project description:The combined heat and drought stress influence the plant growth and development. Switchgrass is an economically important crop due to the availability of high biomass with little water and nutrient requirements. Earlier reports suggested that switchgrass growth and yield highly influenced by heat and drought. The mechanism behind heat and drought stress is not fully understood in switchgrass. This study has undertaken to analyze the epigenetic modification using ChIP-Seq analysis with the activation histone mark H3K4me3. Conclusion: Our study provides the first epigenomic analysis of heat and drought response in switchgrass. This comprehensive resource will provide other epigenomic regulated information in non-model plant species.