Project description:Biological treatments to degrade cyanide are a powerful technology for cyanide removal from industrial wastewaters. It has been previously demonstrated that the alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 is able to use free cyanide and several metal-cyanide complexes as the sole nitrogen source. In this work, the strain CECT5344 has been used for detoxification of the different chemical forms of cyanide that are present in alkaline wastewaters from the jewelry industry. This liquid residue also contains large concentrations of metals like iron, copper and zinc, making this wastewater even more toxic. To elucidate the molecular mechanisms involved in the bioremediation process, a quantitative sRNA sequencing analysis has been carried out in P. pseudoalcaligenes CECT5344 cells grown with the jewelry residue, free cyanide and ammonium as sole nitrogen sources.
Project description:Transcriptional analysis of the cyanotroph Pseudomonas pseudoalcaligenes CECT5344 in response to cyanide present in wastewaters from industrial activities, such as jewelry and electroplating activities
Project description:Transcriptional analysis of the cyanotroph Pseudomonas pseudoalcaligenes CECT5344 in response to cyanide present in wastewaters from industrial activities, such as jewelry and electroplating activities Four-conditions experiment, including three different nitrogen sources (ammonium, sodium cyanide or a cyanide-containing wastewater). One experiment without nitrogen added to the media (nitrogen limited condition). Four biological replicates for each condition (added nitrogen source to the media) plus the experiment without nitrogen source added.
Project description:Biological treatments to degrade cyanide have shown to be a powerful technology for cyanide removal from industrial wastewaters. It has been previously demonstrated that the alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 is able to use free cyanide and several metal−cyanide complexes as the sole nitrogen source. The strain CECT5344 has been used for detoxification of the different chemical forms of cyanide that are present in alkaline wastewaters from the electroplating process of the jewelry industry. This liquid residue also contains large concentrations of metals like iron, copper and zinc, making this wastewater even more toxic. A proteomic analysis by LC-MS/MS has been applied to elucidate the molecular mechanisms involved in this bioremediation process in P. pseudoalcaligenes CECT5344. Among others, different proteins related to cyanide and cyanate assimilation, as well as other proteins involved in transport and resistance to metals were induced by the cyanide-containing jewelry residue have been identified.
Project description:Quantitative proteomic analysis of Pseudomonas pseudoalcaligenes CECT5344 to compare the nitrogen metabolism when ammonium, beta-cyanoalanine and jewelry residue (with both free and metal-complexed cyanide) are used as sole nitrogen source
Project description:Quantitative free labeling proteomics to elucidate the role of the DapA protein in iron metabolism and the assimilation of cyanide in the bacterium Pseudomonas pseudoalcaligenes. Integration, validation and discussion of results using other non-proteomic techniques such as qRT-PCR and determination of key metals.
Project description:Sohn2010 - Genome-scale metabolic network of
Pseudomonas putida (PpuMBEL1071)
This model is described in the article:
In silico genome-scale
metabolic analysis of Pseudomonas putida KT2440 for
polyhydroxyalkanoate synthesis, degradation of aromatics and
anaerobic survival.
Sohn SB, Kim TY, Park JM, Lee
SY.
Biotechnol J 2010 Jul; 5(7):
739-750
Abstract:
Genome-scale metabolic models have been appearing with
increasing frequency and have been employed in a wide range of
biotechnological applications as well as in biological studies.
With the metabolic model as a platform, engineering strategies
have become more systematic and focused, unlike the random
shotgun approach used in the past. Here we present the
genome-scale metabolic model of the versatile Gram-negative
bacterium Pseudomonas putida, which has gained widespread
interest for various biotechnological applications. With the
construction of the genome-scale metabolic model of P. putida
KT2440, PpuMBEL1071, we investigated various characteristics of
P. putida, such as its capacity for synthesizing
polyhydroxyalkanoates (PHA) and degrading aromatics. Although
P. putida has been characterized as a strict aerobic bacterium,
the physiological characteristics required to achieve anaerobic
survival were investigated. Through analysis of PpuMBEL1071,
extended survival of P. putida under anaerobic stress was
achieved by introducing the ackA gene from Pseudomonas
aeruginosa and Escherichia coli.
This model is hosted on
BioModels Database
and identified by:
MODEL1507180043.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.