Project description:The gut microbiota has been implicated in obesity and cardiometabolic diseases, although evidence in humans is scarce. We investigated how gut microbiota manipulation by antibiotics (7-day administration of amoxicillin, vancomycin, or placebo) affects host metabolism in 57 obese, prediabetic men. Vancomycin, but not amoxicillin, decreased bacterial diversity and reduced Firmicutes involved in short-chain fatty acid and bile acid metabolism, concomitant with altered plasma and/or fecal metabolite concentrations. Adipose tissue gene expression of oxidative pathways was upregulated by antibiotics, whereas immune-related pathways were downregulated by vancomycin. Antibiotics did not affect tissue-specific insulin sensitivity, energy/substrate metabolism, postprandial hormones and metabolites, systemic inflammation, gut permeability, and adipocyte size. Importantly, energy harvest, adipocyte size, and whole-body insulin sensitivity were not altered at 8-week follow-up, despite a still considerably altered microbial composition, indicating that interference with adult microbiota by 7-day antibiotic treatment has no clinically relevant impact on metabolic health in obese humans. This randomized, placebo-controlled, double-blind study had a 3-armed parallel design. Overweight/obese participants were randomized to oral intake of amoxicillin, vancomycin or placebo for 7 consecutive days. After an overnight fast, subcutaneous adipose tissue biopsies were taken that were subjected to gene expression profiling by array.
Project description:The gut microbiota has been implicated in obesity and cardiometabolic diseases, although evidence in humans is scarce. We investigated how gut microbiota manipulation by antibiotics (7-day administration of amoxicillin, vancomycin, or placebo) affects host metabolism in 57 obese, prediabetic men. Vancomycin, but not amoxicillin, decreased bacterial diversity and reduced Firmicutes involved in short-chain fatty acid and bile acid metabolism, concomitant with altered plasma and/or fecal metabolite concentrations. Adipose tissue gene expression of oxidative pathways was upregulated by antibiotics, whereas immune-related pathways were downregulated by vancomycin. Antibiotics did not affect tissue-specific insulin sensitivity, energy/substrate metabolism, postprandial hormones and metabolites, systemic inflammation, gut permeability, and adipocyte size. Importantly, energy harvest, adipocyte size, and whole-body insulin sensitivity were not altered at 8-week follow-up, despite a still considerably altered microbial composition, indicating that interference with adult microbiota by 7-day antibiotic treatment has no clinically relevant impact on metabolic health in obese humans.
Project description:We compared transcriptomes of wild-type and ∆vanS strains of Clostridioides difficile 630 growing in the presence or absence of peptidoglycan-targeting antibiotics, vancomycin or ramoplanin. VanS is a histidine kinase of a two-component system that regulates expression of the vancomycin-induced vanG operon.
Project description:To determine if significant genomic changes are associated with the development of vancomycin intermediate Staphylococcus aureus, genomic DNA microarrays were performed to compare the initial vancomycin susceptible Staphylococcus aureus (VSSA) and a related vancomycin intermediate Staphylococcus aureus (VISA) isolate from five unique patients (five isolate pairs). Keywords: comparative genomic hybridization
Project description:The glycopeptide antibiotic vancomycin (VCM) represents one of the last lines of defense against methicillin-resistant Staphylococcus aureus infections. However, vancomycin is nephrotoxic, but the mechanism of toxicity is still unclear. The goal of this study was twofold: (1) gain insights into the molecular mechanisms of vancomycin nephrotoxicity at the genomic level and (2) evaluate potential biomarkers (gene expression profiles) of vancomycin-induced kidney injury Keywords: Dose response
Project description:Purpose: The extensive use of vancomycin has led to the development of Staphylococcus aureus strains with varying degrees of resistance to vancomycin. The present study aimed to explore the molecular causes of vancomycin resistance by conducting a proteomics analysis of subcellular fractions isolated from vancomycin-intermediate resistant S. aureus (VISA) and vancomycin-sensitive S. aureus (VSSA) strains. Methods: We conducted proteomics analysis of subcellular fractions isolated from 2 isogenic S. aureus strains: strain 11 (VSSA) and strain 11Y (VISA). We used an integrated quantitative proteomics approach assisted by bioinformatics analysis, and comprehensively investigated the proteome profile. Intensive bioinformatics analysis, including protein annotation, functional classification, functional enrichment, and functional enrichment-based cluster analysis, was used to annotate quantifiable targets. Results: We identified 128 upregulated proteins and 21 downregulated proteins in strain 11Y as compared to strain 11. The largest group of differentially expressed proteins was composed of enzymatic proteins associated with metabolic and catalytic activity, which accounted for 32.1% and 50% of the total proteins, respectively. Some proteins were indispensable parts of the regulatory networks of S. aureus that were altered with vancomycin treatment, and these proteins were related to cell wall metabolism, cell adhesion, proteolysis, and pressure response. Conclusion: Our proteomics study revealed regulatory proteins associated with vancomycin resistance in S. aureus. Some of these proteins were involved in the regulation of cell metabolism and function, which provides potential targets for the development of strategies to manage vancomycin resistance in S. aureus.
Project description:We used transcriptome profiling by RNAseq to identify the gene expression signatures elucidated in S. coelicolor in response to the three different glycopeptide compounds that share high degree of structural similarities and the same primary mode of action: dalbavancin, vancomycin and chlorobiphenyl-vancomycin.
Project description:The precise mechanism and effects of antibiotics in host gene expression and immunomodulation in MRSA infection is unknown. Using a well characterized Methicillin Resistant Staphylococcus aureus (MRSA) isolate USA300 in a murine model of infection, we determined that linezolid and vancomycin induced differential production of bacterial toxins and host cytokines, differences in host gene expression, and differences in immunomodulators during MRSA bloodstream infection. A total of 35 A/J mice, categorized into seven groups (no infection; no infection with linezolid; no infection with vancomycin; 2 hour post-infection (hpi) S. aureus; 24 hpi S. aureus; 24 hpi S. aureus with linezolid; and 24 hpi S. aureus with vancomycin), were used in this study. Mice were injected with USA300 (6 x 106 CFU/g via i.p. route), then intravenously treated with linezolid (25 mg/kg) or vancomycin (25 mg/kg) at 2 hpi. Control and S. aureus infected mice were euthanized at each time point (2 h or 24h) following injection. Whole blood RNA was used for microarray; three cytokines and two S. aureus toxins [PantonValentine Leukocidin (PVL) and alpha hemolysin] were quantified in mouse serum by ELISA. S. aureus CFUs were significantly reduced in blood and kidney after linezolid or vancomycin treatment in S. aureus-infected mice. In vivo IL-1M-NM-2 in mouse serum was significantly reduced in both linezolid (p=0.001) and vancomycin (p=0.006) treated mice compared to untreated ones. IL-6 was significantly reduced only in linezolid treated (p<0.001) but not in vancomycin treated mice. However, another proinflammatory cytokine, TNF-M-NM-1, did not exhibit altered levels in either linezolid or vancomycin treated mice (p=0.3 and p=0.51 respectively). In vivo level of bacterial toxin, Panton-Valentine leukocidin, in mouse serum was significantly reduced only in linezolid treated mice (p=0.02) but not in vancomycin treated mice. There was no significant effect of either treatment in in vivo level of alpha hemolysin production. Unsupervised hierarchical clustering using the gene expression data from 35 microarrays revealed distinct clustering based on infection status and treatment group. Study of the antibiotic-specific difference in gene expression identified the number of genes uniquely expressed in response to S. aureus infection, infection with linezolid treatment, and infection with vancomycin treatment. Pathway associations study for the differentially expressed genes in each comparison group (Control vs. 24 h S. aureus infection, 24 h S. aureus infection vs. 24 h S. aureus linezolid, and 24 h S. aureus infection vs. 24 h S. aureus vancomycin) in mice using Kyoto Encyclopedia of Genes and Genomes (KEGG) identified toll-like receptor signaling pathway to be common to every comparison groups studied. Glycerolipid metabolism pathway was uniquely associated only with linezolid treatment comparison group. The findings of this study provide the evidence that protein synthesis inhibitor like linezolid does a better job in treating MRSA sepsis compared to cell wall acting antibiotics like vancomycin. To identify differences in host gene expression in a murine sepsis model treated with a) linezolid and b) vancomycin, we used whole blood gene expression (RNA) signatures from A/J inbred mice infected with USA 300 MRSA to evaluate differences in host gene expression among mice treated with linezolid and vancomycin. We used 5 RNA samples from MRSA-infected, linezolid- or vancomycin-treated mice. A total of 7 experimental groups have been employed: 1) Uninfected control group: (negative controls). 2) Uninfected, linezolid-treated group: Uninfected, linezolid-treated mice. 3) Uninfected vancomycin-treated group: Uninfected, vancomycin-treated mice. 4) Infected control group (positive control 2 h) MRSA-infected, untreated mice. 5) Infected control group (positive control 24 h): MRSA-infected, untreated mice. 6) Infected linezolid group: MRSA-infected, linezolid-treated mice. 7) Infected vancomycin group: MRSA-infected, vancomycin-treated mice.
Project description:Vancomycin is a broad-spectrum antibiotic widely used in cases of suspected sepsis in premature neonates. While appropriate and potentially lifesaving in this setting, early life antibiotic exposure alters the developing microbiome and is associated with increased risk of deadly complications, including late-onset sepsis (LOS) and necrotizing enterocolitis (NEC). Recent studies show that neonatal vancomycin treatment disrupts postnatal enteric nervous system (ENS) development in mouse pups, which is in part dependent upon neuro-immune interactions. This suggests that early life antibiotic exposure could disrupt these interactions in the neonatal gut. Notably, a subset of tissue-resident intestinal macrophages, muscularis macrophages, have been identified as important contributors to the development of the postnatal ENS. We hypothesized that vancomycin-induced neonatal dysbiosis impacts postnatal ENS development through effects on macrophages. Using a mouse model, we found that exposure to vancomycin in the first ten days of life, but not in adult mice, resulted in an expansion of pro-inflammatory colonic macrophages by increasing the recruitment of bone-marrow derived macrophages. Single cell RNA sequencing of neonatal colonic macrophages revealed that early-life vancomycin exposure was associated with an increase in immature and inflammatory macrophages, consistent with an influx of circulating monocytes differentiating into macrophages. Lineage tracing confirmed that vancomycin significantly increased non-yolk sac derived macrophage population. Consistent with these results, early life vancomycin exposure did not expand the colonic macrophage population nor decrease enteric neuron density in CCR2 deficient mice. Collectively, these findings demonstrate that early life vancomycin exposure alters macrophage number and phenotypes in distinct ways compared to vancomycin exposure in adult mice and results in altered ENS development.
Project description:In this study, we show that muscle-specific inactivation of FBXW7 elicits striking defects in postprandial glucose metabolism and failure to maintain skeletal muscle mass in adult mice. Further, mice lacking FBXW7 exhibited impaired endurance capacity and exacerbated HFD-induced insulin resistance and postprandial hyperglycemia. At the mechanistic level, RNAseq and quantitative proteomic analysis revealed global effects of FBXW7 deficiency on skeletal muscle transcriptome and proteome. This work illustrates a prominent role of FBXW7 in integrating postprandial nutritional signals to coordinate glucose metabolism and muscle mass maintenance.