Project description:Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disorder characterised by the death of motor neurons, the aetiology of which is essentially unknown. Here, we present an integrative epigenomic study in blood samples from seven clinically characterised sporadic ALS patients to elucidate molecular factors associated with the disease. We used clinical exome sequencing (CES) to study DNA variants, DNA-RNA hybrid immunoprecipitation sequencing (DRIP-seq) to assess R-loop distribution, and reduced representation bisulfite sequencing (RRBS) to examine DNA methylation changes. The above datasets were combined to create a comprehensive repository of genetic and epigenetic changes associated with the ALS cases studied. Our data descriptor is expected to guide further mechanistic studies on ALS to discover underlying genetic causes and develop new epigenetic therapies to combat this life-threatening disease.
Project description:Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disorder characterised by the death of motor neurons, the aetiology of which is essentially unknown. Here, we present an integrative epigenomic study in blood samples from seven clinically characterised sporadic ALS patients to elucidate molecular factors associated with the disease. We used clinical exome sequencing (CES) to study DNA variants, DNA-RNA hybrid immunoprecipitation sequencing (DRIP-seq) to assess R-loop distribution, and reduced representation bisulfite sequencing (RRBS) to examine DNA methylation changes. The above datasets were combined to create a comprehensive repository of genetic and epigenetic changes associated with the ALS cases studied. Our data descriptor is expected to guide further mechanistic studies on ALS to discover underlying genetic causes and develop new epigenetic therapies to combat this life-threatening disease.
Project description:Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disorder characterised by the death of motor neurons, the aetiology of which is essentially unknown. Here, we present an integrative epigenomic study in blood samples from seven clinically characterised sporadic ALS patients to elucidate molecular factors associated with the disease. We used clinical exome sequencing (CES) to study DNA variants, DNA-RNA hybrid immunoprecipitation sequencing (DRIP-seq) to assess R-loop distribution, and reduced representation bisulfite sequencing (RRBS) to examine DNA methylation changes. The above datasets were combined to create a comprehensive repository of genetic and epigenetic changes associated with the ALS cases studied. Our data descriptor is expected to guide further mechanistic studies on ALS to discover underlying genetic causes and develop new epigenetic therapies to combat this life-threatening disease.
Project description:Numerous genes mutated in amyotrophic lateral sclerosis (ALS) share a role in DNA damage and repair, emphasizing genome disintegration in ALS. DNA instability and repair mechanisms segregate extrachromosomal circular DNAs (ec/eccDNAs) that can modulate gene expression somatically. Here, circulome profiling in a hSOD1G93A genotoxicity model of ALS revealed a 6-fold enrichment of small-size eccDNAs relative to controls. DifCir-based differential analysis identified 189 genes with patterned segregation of differentially produced per gene circles (DPpGCs) from ALS but not from control samples, implicating an inter-sample recurrence rate of at least 89% for the top 6 DPpGCs. Mass spectrometry-based ALS circulome-proteome cross-referencing revealed 31 corresponding differentially expressed proteins (DEPs), with 12 DPpGC-DEP pairs being itemized in ALS risk GWAS databases. DPpGC-DEP hotspots mainly convey neuron-specific functions counteracting ALS detriments. This is unanticipated evidence for non-random, profiled eccDNA accumulation in ALS neurodegeneration, involving putative interactions with their gene products as well as biomarker perspectives.