Project description:Study to investigate the role of histone residues H3K4 and H3K36 for gene expression, histone localization and neuronal lineage specification by mutation of K4 and K36 in H3.3 to alanine. Histone variant H3.3 differs from the canonical H3.1/H3.2 by only 4 to 5 amino acids, which are necessary for nucleosome assembly independent of DNA replication, and is encoded by two gene copies. Complete loss of the two H3.3 genes (H3f3a and H3f3b) leads to embryonic lethality while single gene knockout yields viable mice. We used CRISPR-Cas9 to delete H3f3a and introduce homozygous point-mutations into H3f3b, thus ensuring that the entire pool of H3.3 protein carries the mutation of interest. We differentiated H3.3ctrl (H3f3a knock-out; H3f3b wild type), H3.3K4A mutant (H3f3a knock-out; H3f3b K4A) and H3.3K36A mutant (H3f3a knock-out; H3f3b K36A) ESCs into glutamatergic neurons. Gene expression profiles were measured by mRNA-Sequencing in undifferentiated ESCs (D0), neurodevelopment (D8) and differentiated neurons (D12) to assess the impact of the mutation on gene expression and development.
Project description:Study to investigate the role of histone residues H3K4 and H3K36 for gene expression, histone localization and neuronal lineage specification by mutation of K4 and K36 in H3.3 to alanine. Histone variant H3.3 differs from the canonical H3.1/H3.2 by only 4 to 5 amino acids, which are necessary for nucleosome assembly independent of DNA replication, and is encoded by two gene copies. Complete loss of the two H3.3 genes (H3f3a and H3f3b) leads to embryonic lethality while single gene knockout yields viable mice. We used CRISPR-Cas9 to delete H3f3a and introduce homozygous point-mutations into H3f3b, thus ensuring that the entire pool of H3.3 protein carries the mutation of interest. We differentiated H3.3ctrl (H3f3a knock-out; H3f3b wild type), H3.3K4A mutant (H3f3a knock-out; H3f3b K4A) and H3.3K36A mutant (H3f3a knock-out; H3f3b K36A) ESCs into glutamatergic neurons. Genomic localization of H3.3 protein was determined by ChIP-Sequencing in ESCs (D0). Histone modifications patterns of H3K4me1, H3K4me3 and H3K27ac were measured by ChIP-Sequencing in ESCs (D0) to assess the impact of the H3.3K4A mutation on the epigenetic landscape. Levels of H3K36me3 were measured by ChIP-Sequencing in WT and H3.3K36A mutant ESCs (D0), NPCs (D8) and neurons (D12) to assess the impact of the H3.3K36A mutation on H3K36me3 levels in development.
Project description:Study to investigate the role of histone residues H3K4 and H3K36 for gene expression, histone localization and neuronal lineage specification by mutation of K4 and K36 in H3.3 to alanine. Histone variant H3.3 differs from the canonical H3.1/H3.2 by only 4 to 5 amino acids, which are necessary for nucleosome assembly independent of DNA replication, and is encoded by two gene copies. Complete loss of the two H3.3 genes (H3f3a and H3f3b) leads to embryonic lethality while single gene knockout yields viable mice. We used CRISPR-Cas9 to delete H3f3a and introduce homozygous point-mutations into H3f3b, thus ensuring that the entire pool of H3.3 protein carries the mutation of interest. We differentiated H3.3ctrl (H3f3a knock-out; H3f3b wild type), H3.3K4A mutant (H3f3a knock-out; H3f3b K4A) and H3.3K36A mutant (H3f3a knock-out; H3f3b K36A) ESCs into glutamatergic neurons. Genomic localization of H3.3 protein was determined by ChIP-Sequencing in ESCs (D0). Distribution patterns of RNA Polymerase II Phosphorylated on Serine 5 (RNA Pol II Ser5P), of histone modification H3K27me3 and chromatin remodeler components Brg1/Smarca4 (Swi/Snf) and Chd4 (NuRD) were measured by ChIP-Sequencing in ESCs (D0) to assess the impact of the H3.3K4A mutation on the epigenetic landscape. Distribution patterns of H3.3 were assessed by ChIP-Sequencing in HEK293T cells after depletion of Brg1/Smarca4 (Swi/Snf) and Chd4 (NuRD).
Project description:Study to investigate the role of histone residues H3K4 and H3K36 for gene expression, histone localization and neuronal lineage specification by mutation of K4 and K36 in H3.3 to alanine. Histone variant H3.3 differs from the canonical H3.1/H3.2 by only 4 to 5 amino acids, which are necessary for nucleosome assembly independent of DNA replication, and is encoded by two gene copies. Complete loss of the two H3.3 genes (H3f3a and H3f3b) leads to embryonic lethality while single gene knockout yields viable mice. We used CRISPR-Cas9 to delete H3f3a and introduce homozygous point-mutations into H3f3b, thus ensuring that the entire pool of H3.3 protein carries the mutation of interest. We differentiated H3.3ctrl (H3f3a knock-out; H3f3b wild type), H3.3K4A mutant (H3f3a knock-out; H3f3b K4A) and H3.3K36A mutant (H3f3a knock-out; H3f3b K36A) ESCs into glutamatergic neurons. To assess the effect of the K4A mutation on Pol II activity, nascent RNA levels were mesaured by PRO-seq.
Project description:We performed microarray analyses on human ESCs-derived NPs and neurons carrying loss-of-function mutation in the MeCP2 gene. Neural precursors and differentiating neurons at 2 and 4-week were used for RNA extraction and affymetrix microarrays. We added ERCC RNA spike-in controls to normalize to cell number input.
Project description:Mouse WT129 ESCs were differentiated into glutamatergic neurons and samples were collected at days 0 (mESCs), 4 (embryoid bodies), 8 (neuronal precursors) and 12 (neurons). These are RNA-seq data to profile RNA expression during differentiation.
Project description:Bulk RNA-seq using the smartSeq2 protocol in mouse Barrelette neurons, progenitors and ESCs at different developmental stages and in different genotypes.
Project description:Cellular differentiation requires cells to undergo dramatic but strictly controlled changes in chromatin organization, transcriptional regulation, and protein production and interaction. To understand the regulatory connections between these processes, we applied a multi-omics approach integrating proteomic, transcriptomic, chromatin accessibility, protein occupancy, and protein-chromatin interaction data acquired during differentiation of mouse embryonic stem cells (ESCs) into post-mitotic neurons. We found extensive remodeling of the chromatin that was preceding changes on RNA and protein levels. We found the pluripotency factor Sox2 as regulator of neuron-specific genes and, as a potential mechanism, revealed its genomic redistribution from pluripotency enhancers to neuronal promoters and concomitant change of its protein interaction network upon differentiation. We identified Atrx as a major Sox2 partner in neurons, whose co-localisation correlated with an increase in active enhancer marks and increased expression of nearby genes, and where deletion of a Sox2-Atrx co-bound site resulted in reduced expression of the proximal gene. Collectively, these findings provide key insights into the regulatory transformation of Sox2 during neuronal differentiation and highlight the significance of multi-omic approaches in understanding gene regulation in complex systems.