Project description:miRNA profiling of bovine satellite cells (BSC) differentiated into myotubes (6th day of in vitro differentiation). BSC isolated from m. semitendinosus of beef (Hereford & Limousine) and dairy (Holstein-Friesian) cattle. Goal was to determine differences in miRNA expresion during in vitro myogenesis in beef vs dairy cattle used as a control.
Project description:High yielding dairy cattle undergo a state of NEB (negative energy balance) during the post-partum period when energy demand for lactation and maintenance exceeds energy intake. During this period in order to counteract NEB the liver under goes extensive metabolic and physiological change resulting in alteration in hepatic genes and miRNAs expression. We used Affymetrix Multispecies miRNA-2_0 Array with miRBase version 15 coverage to assess the liver miRNA expression in SNEB (severe NEB) and MNEB (mild NEB) Holstein Friesian cattle during the post-partum period. A NEB model of Holstein Friesian was established such that 12 post-partum cattle were randomly assigned to MNEB and SNEB groups depending on different feeding and milking regimes
Project description:High yielding dairy cattle undergo a state of NEB (negative energy balance) during the post-partum period when energy demand for lactation and maintenance exceeds energy intake. During this period in order to counteract NEB the liver under goes extensive metabolic and physiological change resulting in alteration in hepatic genes and miRNAs expression. We used Affymetrix Multispecies miRNA-2_0 Array with miRBase version 15 coverage to assess the liver miRNA expression in SNEB (severe NEB) and MNEB (mild NEB) Holstein Friesian cattle during the post-partum period.
Project description:This study is performed in the frame of a bigger study dedicated to the integrated analysis of the single-cell transcriptome and chromatin accessibility datasets of peripheral blood mononuclear cells (PBMCs) with a large-scale GWAS of 45 complex traits in Chinese Holstein cattle. In dairy cattle, lipopolysaccharide (LPS) is a crucial mediator of chronic inflammation to modulate immune responses. PBMCs include primary T and B cells, natural killer (NK) cells, monocytes (Mono), and dendritic cells (DC). It still remains unknown how LPS stimulated PBMCs at the single-cell level in dairy cattle. Therefore, the single-cell transcriptome and chromatin accessibility datasets in this study enable the further understanding and application of the cell types and functions of PBMCs and their responses to LPS stimulation in vitro in other studies.
Project description:This trial was undertaken to examine the perhipheral cellular and antibody response of cattle following infestation with the cattle tick, Rhipicephalus microplus. The information from the Affymetrix gene expression data is used to complement other measurements of immune function such as cellular subset composition and antibody response in cattle of high (Brahman) and low (Holstein-Friesian) resistance to the cattle tick. Keywords: Disease state analysis
Project description:This trial was undertaken to examine the perhipheral cellular and antibody response of cattle following infestation with the cattle tick, Rhipicephalus microplus. The information from the Affymetrix gene expression data is used to complement other measurements of immune function such as cellular subset composition and antibody response in cattle of high (Brahman) and low (Holstein-Friesian) resistance to the cattle tick. Experiment Overall Design: RNA was extracted from white blood cells during a period of successive, heavy infestations with R. microplus. RNA samples from 3 Holstein-Friesian and 3 Brahman animals were analysed on individual slides.
Project description:An accumulation of over a decade of research in cattle has shown that genetic selection for decreased residual feed intake (RFI), defined as the difference between an animal’s actual feed intake and its expected feed intake, is a viable option for improving feed efficiency and reducing the feed requirements of herds, thereby improving the profitability of cattle producers. Hormonal regulation is one of the most important factors in feed intake. To determine the relationship between hormones and feed efficiency, we performed gene expression profiling of hormonal regulation in whole blood of Chinese Holstein cattle with low and high RFI coefficients. 857 differential expression genes (from 24683 genes) were found. Among these, 415 genes were up-regulated and 442 genes were down-regulated in the low RFI group. The gene ontology (GO) search revealed 6 significant terms and 64 genes associated with hormonal regulation, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) selected the adipocytokine signaling pathway, insulin signaling pathway. In conclusion, the study indicated that the molecular expression of genes associated with hormonal regulation differs in dairy cows, depending on their RFI coefficients, and that these differences may be related to the molecular regulation of the leptin-NPY and insulin signaling pathways.
Project description:This experiment was undertaken to document changes in gene expression in the skin of tick-resistant Brahman (Bos indicus) and tick-susceptible Holstein-Friesian (Bos taurus) cattle prior to, and following, infestation with the cattle tick Rhipicephalus (Boophilus) microplus Keywords: Disease state analysis