Project description:The H3D virtual screening cascade contains models for Mycobacterium tuberculosis and Plasmodium falciparum IC50 predictions, as well as ADME, cytotoxicity, and solubility assays.
Model Type: Predictive machine learning model.
Model Relevance: This panel of models provides predictions for the H3D virtual screening cascade.
Model Encoded by: Miquel Duran-Frigola (Ersilia)
Metadata Submitted in BioModels by: Zainab Ashimiyu-Abdusalam
Implementation of this model code by Ersilia is available here:
https://github.com/ersilia-os/eos7kpb
Project description:Lung cancer is the leading cause of cancer death worldwide. Low-dose computed tomography screening (LDCT) was recently shown to anticipate the time of diagnosis, thus reducing lung cancer mortality. We identifed a serum microRNA signature (the miR-Test) that could identify the optimal target population for LDCT screening. Here, we performed a large-scale validation study of the miR-Test in high-risk individuals enrolled in the Continuous Observation of Smoking Subjects (COSMOS) lung cancer screening program. RT-qPCR of circulating microRNA purified from serum samples. Trizol-LS and miRNEASY Mini kit (Qiagen) were used for miRNA purification. Custom TaqMan® Low Density Array microRNA Custom Panel (Life Technologies) was used to screen serum circulating microRNA.
Project description:Primary cultures of patient tumor cells (PCPTC) were used in a cell-based cytotoxicity screen. Microarray-based mRNA profiling was used to identify the mechanism-of-action for the small molecule VLX 50. MCF7 cells were treated with the PCPTC screening hit VLX 50 or DMSO control for 6h prior to RNA isolation. One sample per treatment. Data were analyzed using both MAS5.0 and RMA.
Project description:Genomic screening was performed for one family containing MZ twins with testicular germ cell tumors, in order to define alterations associated with risk of tumor development. Copy number alterations were evaluated using array-CGH (4x44K, Agilent Technologies) in one seminoma and one embryonal carcinoma (EC) from MZ twins. In addition, genomic alterations from the tumors and peripheral blood cells of the twins were compared to the parental genomes via their peripheral blood cells.
Project description:Lung cancer is the leading cause of cancer death worldwide. Low-dose computed tomography screening (LDCT) was recently shown to anticipate the time of diagnosis, thus reducing lung cancer mortality. We identifed a serum microRNA signature (the miR-Test) that could identify the optimal target population for LDCT screening. Here, we performed a large-scale validation study of the miR-Test in high-risk individuals enrolled in the Continuous Observation of Smoking Subjects (COSMOS) lung cancer screening program.