Project description:We performed genome-wide profiling of miRNA expression in the airway epithelial compartment in asthma to identify miRNA pathways associated with epithelial abnormalities using miRNA microarrays and real-time PCR. We also sought to identify the effect of inhaled corticosteroids (ICS) on airway epithelial miRNA expression
Project description:In this study, we assessed lower airway microbiome from a cohort of patients to determine whether specific microbiome taxa correlate with with specific metabolic activities. In a subset of 12 patients, transcriptomic expression were analyzed to compare host mucosa immune response We collected peripheral airway brushings from the 12 subjects whose lung microbiome were analyzed; Total RNA were obtained from the peripheral airway epithelium.
Project description:Azithromycin (AZM) reduces pulmonary inflammation and exacerbations in chronic obstructive pulmonary disease patients with emphysema. The antimicrobial effects of AZM on the lung microbiome are not known and may contribute to its beneficial effects. Methods. Twenty smokers with emphysema were randomized to receive AZM 250 mg or placebo daily for 8 weeks. Bronchoalveolar lavage (BAL) was performed at baseline and after treatment. Measurements included: rDNA gene quantity and sequence. Results. Compared with placebo, AZM did not alter bacterial burden but reduced α-diversity, decreasing 11 low abundance taxa, none of which are classical pulmonary pathogens. Conclusions. AZM treatment the lung microbiome Randomized trial comparing azithromycin (AZM) treatment with placebo for eight weeks. Bronchoalveolar lavage (BAL) samples were obtained before and after treatment to explore the effects of AZM on microbiome, in the lower airways. 16S rRNA was quantified and sequenced (MiSeq) The amplicons from total 39 samples are barcoded and the barcode is provided in the metadata_complete.txt file.
Project description:The Differential Effects of Inhaled Symbicort and AdvaiR on Lung Microbiota (DISARM) study aimed to determine the effects of inhaled corticosteroids (ICS) on the lung microbiome. The full trial protocol is registered at clinicaltrials.gov (NCT02833480) and the study was approved by the Human Research Ethics Committee of the University of British Columbia and Providence Health Care (H14-02277). Participants were randomized to receive inhaled long-acting beta agonist (LABA) treatment with formoterol, or LABA/ICS combination treatment with formoterol/budesonide or salmeterol/fluticasone propionate, for 12 weeks. Bronchoscopy was performed before and after treatment, and bronchoalveolar lavage fluid and bronchial brushes (6th-8th generation) were collected. This dataset contains RNA-seq data from the bronchial brushes. RNA was extracted from cytological brush specimens stored in QIAzol RNA lysis buffer (QIAGEN, Stockach, Germany) using the RNeasy Plus kit (QIAGEN) according to the manufacturer’s instructions, and specimens were submitted for sequencing at the University of British Columbia Biomedical Research Centre. Sample quality control was performed using the Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA). Qualifying samples were then prepared following the standard protocol for the NEBnext Ultra ii Stranded mRNA (New England Biolabs, Ipswich, MA, USA). Sequencing was performed on the Illumina NextSeq 500 (Illumina, San Diego, CA, USA) with paired end 42bp × 42bp reads. Samples were sequenced in batches of 24, with batches formed by random selection of samples.
Project description:In a prior report, we observed two distinct lung microbiomes in healthy subjects that we termed â??pneumotypesâ??: pneumotypeSPT, characterized by high bacterial load and supraglottic predominant taxa (SPT) such as the anaerobes Prevotella and Veillonella; and pneumotypeBPT, with low bacterial burden and background predominant taxa (BPT) found in the saline lavage and bronchoscope. Here, we determined the prevalence of these two contrasting lung microbiome types, in a multi-center study of healthy subjects. We confirmed that a lower airway microbiome enriched with upper airway microbes (pneumotypeSPT) was present in ~45% of healthy individuals. Cross-sectional Multicenter cohort. BAL of 49 healthy subjects from three cohort had their lower airway microbiome assessed by 16S rDNA sequencing and microbial gene content (metagenome) was computationally inferred from taxonomic assignments. The amplicons from total 100 samples are barcoded; the barcode and other clinical characteristics (e.g. inflammatory biomarkers and metabolome data) for each sample are provided in the 'Pneumotype.sep.Map.A1.txt' file.
Project description:Pancreatic cancer is the 3rd most prevalent cause of cancer related deaths in United states alone, with over 55000 patients being diagnosed in 2019 alone and nearly as many succumbing to it. Late detection, lack of effective therapy and poor understanding of pancreatic cancer systemically contributes to its poor survival statistics. Obesity and high caloric intake linked co-morbidities like type 2 diabetes (T2D) have been attributed as being risk factors for a number of cancers including pancreatic cancer. Studies on gut microbiome has shown that lifestyle factors as well as diet has a huge effect on the microbial flora of the gut. Further, modulation of gut microbiome has been seen to contribute to effects of intensive insulin therapy in mice on high fat diet. In another study, abnormal gut microbiota was reported to contribute to development of diabetes in Db/Db mice. Recent studies indicate that microbiome and microbial dysbiosis plays a role in not only the onset of disease but also in its outcome. In colorectal cancer, Fusobacterium has been reported to promote therapy resistance. Certain intra-tumoral bacteria have also been shown to elicit chemo-resistance by metabolizing anti-cancerous agents. In pancreatic cancer, studies on altered gut microbiome have been relatively recent. Microbial dysbiosis has been observed to be associated with pancreatic tumor progression. Modulation of microbiome has been shown to affect response to anti-PD1 therapy in this disease as well. However, most of the studies in pancreatic cancer and microbiome have remained focused om immune modulation. In the current study, we observed that in a T2D mouse model, the microbiome changed significantly as the hyperglycemia developed in these animals. Our results further showed that, tumors implanted in the T2D mice responded poorly to Gemcitabine/Paclitaxel (Gem/Pac) standard of care compared to those in the control group. A metabolomic reconstruction of the WGS of the gut microbiota further revealed that an enrichment of bacterial population involved in drug metabolism in the T2D group.
Project description:Aging is associated with declining immunity and inflammation as well as alterations in the gut microbiome with a decrease of beneficial microbes and increase in pathogenic ones. The aim of this study was to investigate aging associated gut microbiome in relation to immunologic and metabolic profile in a non-human primate (NHP) model. 12 old (age>18 years) and 4 young (age 3-6 years) Rhesus macaques were included in this study. Immune cell subsets were characterized in PBMC by flow cytometry and plasma cytokines levels were determined by bead based multiplex cytokine analysis. Stool samples were collected by ileal loop and investigated for microbiome analysis by shotgun metagenomics. Serum, gut microbial lysate and microbe-free fecal extract were subjected to metabolomic analysis by mass-spectrometry. Our results showed that the old animals exhibited higher inflammatory biomarkers in plasma and lower CD4 T cells with altered distribution of naïve and memory T cell maturation subsets. The gut microbiome in old animals had higher abundance of Archaeal and Proteobacterial species and lower Firmicutes than the young. Significant enrichment of metabolites that contribute to inflammatory and cytotoxic pathways was observed in serum and feces of old animals compared to the young. We conclude that aging NHP undergo immunosenescence and age associated alterations in the gut microbiome that has a distinct metabolic profile.
Project description:We performed genome-wide profiling of miRNA expression in the airway epithelial compartment in asthma to identify miRNA pathways associated with epithelial abnormalities using miRNA microarrays and real-time PCR. We also sought to identify the effect of inhaled corticosteroids (ICS) on airway epithelial miRNA expression Samples were obtained from airway epithelial cells by bronchoscopic brushing from three groups of subjects: Healthy Controls ( N=12), Steroid Naïve Asthma (N=16), Steroid-requiring Asthma (N=19).
Project description:We performed small RNA sequencing (TruSeq) of gene expression on bronchial cells from human bronchial epithelial brushings from 16 independent subjects whose samples were classified as either healthy controls (with no asthma or lung disease) or steroid-naive asthmatics (subjects with asthma not using inhaled corticosteroids (ICS) for 6 weeks before enrollment that were studied at baseline ('Steroid-naive asthma - Baseline') or after 8 weeks of treatment with budesonide, 200 μg twice a day, ('Steroid-naive asthma - Post-ICS treatment')). The goal was to assess abundance of miRNAs in all the samples collectively.
Project description:In asthma, the clinical efficacy of inhaled corticosteroids (ICSs) is enhanced by long-acting β2-adrenoceptor agonists (LABAs). ICSs, or more accurately, glucocorticoids, promote therapeutically-relevant changes in gene expression and this genomic effect can be enhanced by a LABA. To investigate the gene expression changes by each condition, transcriptomic analysis was performed on RNA extracted from BEAS-2B cells treated with budesonide, formoterol, or both combined.