Project description:Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths have impeded greater understanding of poly(A)-tail function. Here we describe poly(A)-tail length profiling by sequencing (PAL-seq) and apply it to measure tail lengths of millions of individual RNAs isolated from yeasts, cell lines, Arabidopsis thaliana leaves, mouse liver, and zebrafish and frog embryos. Poly(A)-tail lengths were conserved between orthologous mRNAs, with mRNAs encoding ribosomal proteins and other 'housekeeping' proteins tending to have shorter tails. As expected, tail lengths were coupled to translational efficiencies in early zebrafish and frog embryos. However, this strong coupling diminished at gastrulation and was absent in non-embryonic samples, indicating a rapid developmental switch in the nature of translational control. This switch complements an earlier switch to zygotic transcriptional control and explains why the predominant effect of microRNA mediated deadenylation concurrently shifts from translational repression to mRNA destabilization.
Project description:Poly(A) tails enhance the stability and translation of most eukaryotic messenger RNAs, but difficulties in globally measuring poly(A)-tail lengths have impeded greater understanding of poly(A)-tail function. Here we describe poly(A)-tail length profiling by sequencing (PAL-seq) and apply it to measure tail lengths of millions of individual RNAs isolated from yeasts, cell lines, Arabidopsis thaliana leaves, mouse liver, and zebrafish and frog embryos. Poly(A)-tail lengths were conserved between orthologous mRNAs, with mRNAs encoding ribosomal proteins and other 'housekeeping' proteins tending to have shorter tails. As expected, tail lengths were coupled to translational efficiencies in early zebrafish and frog embryos. However, this strong coupling diminished at gastrulation and was absent in non-embryonic samples, indicating a rapid developmental switch in the nature of translational control. This switch complements an earlier switch to zygotic transcriptional control and explains why the predominant effect of microRNA mediated deadenylation concurrently shifts from translational repression to mRNA destabilization. 64 samples from a variety of species
Project description:Polyadenylation at the 3’ end of eukaryotic messenger RNAs enhances mRNA stability and translational efficiency. Global analysis for poly(A) tail lengths may shed lights on various aspects of gene regulation studies. Two NGS-based methods have been introduced for genome-wide poly(A) profiling, and they have shown human poly(A) profiles with shorter than previously conceived tail lengths. However, both methods are technically challenging and difficult to be repeated or widely adapted. Here we present a more straightforward method for poly(A) profiling. Poly(A)-seq performed on Illumina NextSeq 500 produces single-end 300 nt reads that covers the entirety of poly(A) tails, and poly(A) lengths can be directly calculated from base call data. With Poly(A)-seq we report that the global poly(A) lengths of several human cell lines may be longer than previously reported. We also show that the size selection step during Poly(A)-seq library preparation may greatly affect the sequencing profile, and thus cautions should be taken for comparisons between samples. As a convenient tool, we hope wide applications of Poly(A)-seq helps to bring better understanding of poly(A) tail properties and functions.
Project description:We report systematical profiling of translation efficiency and mRNA stability dependent on the dynamics of poly(A)-tail length in stress conditions of human cells. In this study, we developed a new feasible method measuring poly(A)-tail length called TED-seq and applied it to investigate the change of mRNA's poly(A)-tail lengths in ER stress pharmacologically induced by thapsigargin (THAP). Combined with other global RNA analyses such as RNA-seq, Ribo-seq and PRO-seq, we observed that ER stress induced lenthening poly(A)-tail length, in particular of ER-stress-regulators, upon ER stress. More specifically, these mRNAs are translationally de-repressed and more stabilized based on increase in poly(A)-tail length. We also identified that insoluble fractions which include stress-induced RNA-granules have overall shorter length of poly(A) tail. Taken together, our data suggest that poly(A)-tail lengths are dynamically regulated and influence both translation efficiency and mRNA stability in ER stress.
Project description:Poly(A) tails are critical for mRNA stability and translation. However, recent studies have challenged this view, showing that poly(A) tail length and translation efficiency are decoupled in non-embryonic cells. Using TAIL-seq and ribosome profiling, we investigate poly(A) tail dynamics and translational control in the somatic cell cycle. We find dramatic changes in poly(A) tail lengths of cell cycle regulatory genes like CDK1, TOP2A, and FBXO5, explaining their translational repression in M phase. We also find that poly(A) tail length is coupled to translation when the poly(A) tail is <20 nucleotides. However, as most genes have >20 nucleotide poly(A) tails, their translation is regulated mainly via poly(A) tail length-independent mechanisms during the cell cycle. Specifically, we find that terminal oligopyrimidine (TOP) tract-containing transcripts escape global translational suppression in M phase and are actively translated. Our quantitative and comprehensive data provide a revised view of translational control in the somatic cell cycle.
Project description:Poly(A) tails are critical for mRNA stability and translation. However, recent studies have challenged this view, showing that poly(A) tail length and translation efficiency are decoupled in non-embryonic cells. Using TAIL-seq and ribosome profiling, we investigate poly(A) tail dynamics and translational control in the somatic cell cycle. We find dramatic changes in poly(A) tail lengths of cell cycle regulatory genes like CDK1, TOP2A, and FBXO5, explaining their translational repression in M phase. We also find that poly(A) tail length is coupled to translation when the poly(A) tail is <20 nucleotides. However, as most genes have >20 nucleotide poly(A) tails, their translation is regulated mainly via poly(A) tail length-independent mechanisms during the cell cycle. Specifically, we find that terminal oligopyrimidine (TOP) tract-containing transcripts escape global translational suppression in M phase and are actively translated. Our quantitative and comprehensive data provide a revised view of translational control in the somatic cell cycle. HeLa cells were synchronized at S or M phase, and subject to RNA-seq, ribosome profiling and TAIL-seq analysis.
Project description:During oocyte maturation and early embryonic development, poly(A)-tail lengths strongly influence mRNA translation. However, how tail lengths are controlled at different developmental stages has been unclear. Here, we performed tail-length and translational profiling of mRNA reporter libraries (each with > 10 million 3ʹ-UTR sequence variants) in frog oocytes and embryos, and fish embryos. These analyses revealed that the UUUUA motif specifies cytoplasmic polyadenylation and identified diverse context features that modulate the activity of this 5-mer. Additional sequence motifs drive stage-specific deadenylation in embryos, and UUUUA and C-rich motifs drive tail-length-independent translational repression in oocytes. A neural network model accurately predicts tail-length change during oocyte maturation in frogs, mice, and humans. Analyses of human sequence variants showed that those predicted to disrupt tail-length control have been under negative selection, implying that our insights into control of poly(A)-tail length and translation have implications for human health and fertility.
Project description:The poly(A) tail at 3' ends of eukaryotic mRNAs promotes their nuclear export, stability and translational efficiency, and changes in its length can strongly impact gene expression. The Arabidopsis thaliana genome encodes three canonical nuclear poly(A) polymerases, PAPS1, PAPS2 and PAPS4. As shown by their different mutant phenotypes, these three isoforms are functionally specialized, with PAPS1 modifying organ growth and suppressing a constitutive immune response. However, the molecular basis of this specialization is largely unknown. Here, we have estimated poly(A)-tail lengths on a transcriptome-wide scale in wild-type and paps1 mutants. This identified categories of genes as particularly strongly affected in paps1 mutants, including genes encoding ribosomal proteins, cell-division factors and major carbohydrate-metabolic proteins. We experimentally verified two novel functions of PAPS1 in ribosome biogenesis and redox homoeostasis that were predicted based on the analysis of poly(A)-tail length changes in paps1 mutants. When overlaying the PAPS1-dependent effects observed here with coexpression analysis based on independent microarray data, the two clusters of transcripts that are most closely coexpressed with PAPS1 show the strongest change in poly(A)-tail length and transcript abundance in paps1 mutants in our analysis. This suggests that their coexpression reflects at least partly the preferential polyadenylation of these transcripts by PAPS1 versus the other two poly(A)-polymerase isoforms. Thus, transcriptomewide analysis of poly(A)-tail lengths identifies novel biological functions and likely target transcripts for polyadenylation by PAPS1. Data integration with large-scale coexpression data suggests that changes in the relative activities of the isoforms are used as an endogenous mechanism to co-ordinately modulate plant gene expression. Analysing long and short poly(A)-tail fractions from 4 paps1 mutant and 4 Ler samples.
Project description:Because maturing oocytes and early embryos lack transcription, posttranscriptional regulatory processes must control their development. To better understand this control, we profiled translational efficiencies and poly(A)-tail lengths throughout Drosophila oocyte maturation and early embryonic development. The correspondence between translational-efficiency changes and tail-length changes indicated that tail-length changes broadly reshape translational activity until gastrulation, when this coupling disappears. Relative changes were largely retained in the absence of poly(A)-tail lengthening, which indicated that selective poly(A)-tail shortening primarily specifies the changes. Many translational changes depended on PAN GU and Smaug, and both acted primarily through tail-length changes. Our results also revealed tail-length–independent mechanisms of translational control that repressed translation regardless of tail-length changes during oocyte maturation, maintained translation despite tail-length shortening during oocyte maturation, and prevented detectable translation of bicoid and several other mRNAs before egg activation. In addition to these fundamental insights, our results provide valuable resources for future studies.
Project description:Because maturing oocytes and early embryos lack transcription, posttranscriptional regulatory processes must control their development. To better understand this control, we profiled translational efficiencies and poly(A)-tail lengths throughout Drosophila oocyte maturation and early embryonic development. The correspondence between translational-efficiency changes and tail-length changes indicated that tail-length changes broadly reshape translational activity until gastrulation, when this coupling disappears. Relative changes were largely retained in the absence of poly(A)-tail lengthening, which indicated that selective poly(A)-tail shortening primarily specifies the changes. Many translational changes depended on PAN GU and Smaug, and both acted primarily through tail-length changes. Our results also revealed tail-lengthâindependent mechanisms of translational control that repressed translation regardless of tail-length changes during oocyte maturation, maintained translation despite tail-length shortening during oocyte maturation, and prevented detectable translation of bicoid and several other mRNAs before egg activation. In addition to these fundamental insights, our results provide valuable resources for future studies. 42 samples analyzed using RNA-seq, ribosome footprint profiling, and PAL-seq.