Project description:Genomic DNA from 55 wild type Col x Ler F2 individuals was extracted using the CTAB method. Equal amounts of DNA from these 55 plants were pooled into two groups (pool 1 = 4 plants; pool 2 = 51 plants), and nine micrograms of gDNA from each pool was used to generate Nanopore sequencing libraries with the Ligation Sequencing Kit V14 (Nanopore, SQK-LSK114). The libraries were sequenced independently using PromethION (BGI, Hong Kong).
Project description:5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are modified versions of cytosine in DNA with roles in regulating gene expression. Using whole genomic DNA from mouse cerebellum, we have benchmarked 5mC and 5hmC detection by Oxford Nanopore Technologies sequencing against other standard techniques. In addition, we assessed the ability of duplex base-calling to study strand asymmetric modification. Nanopore detection of 5mC and 5hmC is accurate relative to compared techniques and opens new means of studying these modifications. Strand asymmetric modification is widespread across the genome but reduced at imprinting control regions and CTCF binding sites in mouse cerebellum. This study demonstrates the unique ability of nanopore sequencing to improve the resolution and detail of cytosine modification mapping.
Project description:Replicon-seq is a method to study the progression of sister replisomes during DNA replication. This method relies excision of the full-length of replicons by the fusion of MNase to MCM4 and sequencing via Nanopore technology.
Project description:S. meliloti strains with a bi- and monopartite genome configuration were constructed by consecutive Cre/lox-mediated site-specific fusions of the secondary replicons. Beside the correct genomic arrangements, these strains and precursors were tested for variations in the nucleotide sequence. Futher, a marker fequency analysis was performed to test if replication is initiated at all origins and to determine the replication termination regions of the triple replicon fusion molecule. To gain the sequence data for these analyses, respective strains were applied to whole genome sequencing using an Illumina MiSeq-System and Oxford Nanopore (MinION) sequencing technology.
Project description:We sequenced DNA from a bulk of Col x Ler F2 hybrid plants (WT and recq4) using Nanopore long-read sequencing and identified crossover sites with COmapper. For nanopore sequencing of gDNA from 1,000 pooled seedlings, 10-day-old seedlings were ground in liquid nitrogen using a mortar and pestle. The ground tissue was resuspended in four volumes of CTAB buffer (1% [w/v] CTAB, 50 mM Tris-HCl pH 8.0, 0.7 M NaCl, 10 mM EDTA) and incubated at 65°C for 30 min. Following chloroform extraction, isopropanol precipitation and removal of RNAs as above, the gDNA pellet was resuspended in 150 μl TE (10 mM Tris-HCl pH 8.0, 0.1 mM EDTA) buffer and gDNA was quantified using a Qubit dsDNA Broad Range assay kit (Thermo Fisher, Q32853). Nine micrograms of gDNA from pollen or seedlings was used to construct a nanopore long-read sequencing library using a Ligation Sequencing Kit V14 (Nanopore, SQK-LSK114). The libraries were sequenced using a PromethION platform (BGI, Hong Kong).
Project description:We used the nanopore Cas9 targeted sequencing (nCATS) strategy to specifically sequence 125 L1HS-containing loci in parallel and measure their DNA methylation levels using nanopore long-read sequencing. Each targeted locus is sequenced at high coverage (~45X) with unambiguously mapped reads spanning the entire L1 element, as well as its flanking sequences over several kilobases. The genome-wide profile of L1 methylation was also assessed by bs-ATLAS-seq in the same cell lines (E-MTAB-10895).
Project description:We sequenced DNA from the leaves of ten Col x Ler F1 hybrid plants (WT and recq4) using Nanopore long-read sequencing and identified crossover sites with COmapper. These data were used as a negative control for COmapper, as no crossover sites were expected to be detected. For nanopore sequencing of gDNA from leaves, leaves from 10 5-week-old plants were ground in liquid nitrogen using a mortar and pestle. The ground tissue was resuspended in four volumes of CTAB buffer (1% [w/v] CTAB, 50 mM Tris-HCl pH 8.0, 0.7 M NaCl, 10 mM EDTA) and incubated at 65°C for 30 min. Following chloroform extraction, isopropanol precipitation and removal of RNAs as above, the gDNA pellet was resuspended in 150 μl TE (10 mM Tris-HCl pH 8.0, 0.1 mM EDTA) buffer and gDNA was quantified using a Qubit dsDNA Broad Range assay kit (Thermo Fisher, Q32853). Nine micrograms of gDNA from pollen or seedlings was used to construct a nanopore long-read sequencing library using a Ligation Sequencing Kit V14 (Nanopore, SQK-LSK114). The libraries were sequenced using a PromethION platform (BGI, Hong Kong).
Project description:Nanopore Sequencing and assembly of Col-0 carrying seed coat expressed GFP and RFP transgenes flanking the centromere of chromosome 3 (CTL 3.9) - additionally, DNA methylation was derived using deepsignal-plant using these reads.
Project description:Human cancer cell lines were pulsed with thymidine analogues EdU and BrdU, sequenced on the Oxford Nanopore platform, and analysed with our DNAscent software to measure DNA replication stress.
Project description:Over the last 30 years the soil bacterium Agrobacterium tumefaciens has been the workhorse tool for plant genome engineering. Replacement of native tumor-inducing (Ti) plasmid elements with customizable cassettes enabled insertion of a sequence of interest as “Transfer DNA” (T-DNA) into the plant genome of interest. Although these T-DNA transfer mechanisms are well understood, detailed understanding of the structure and epigenomic status of insertion events was limited by current technologies. To fill this gap, we analyzed transgenic Arabidopsis thaliana lines from three widely used collections (SALK, SAIL and WISC) with two single molecule technologies, optical genome mapping and nanopore sequencing. Optical maps for four randomly selected T-DNA lines revealed between one and seven insertions/rearrangements with unexpectedly large sizes ranging from 27 to 236 kilobases. De novo nanopore-based genome assemblies for two heterozygous lines resolved T-DNA structures up to 36 kb and revealed large-scale T-DNA associated translocations and exchange of chromosome arm ends. The multiple internally rearranged nature of T-DNA arrays, consisting of identical T-DNA/backbone concatemers made full assembly even for long nanopore reads impossible. For the current TAIR10 reference genome, nanopore contigs corrected 83% of non-centromeric misassemblies. This unprecedented nucleotide-level definition of T-DNA insertions enabled the mapping of epigenome data. The SALK_059379 T-DNA insertions were enriched for 24nt siRNAs and contained dense cytosine DNA methylation. Transgene silencing via the RNA directed DNA methylation pathway was confirmed by in planta assays. In contrast, SAIL_232 T-DNA sequence was predominantly targeted by 21/22nt siRNAs, and DNA methylation and silencing was limited to the GUS gene, but not the resistance gene. With the emergence of genome editing technologies that rely on Agrobacterium for gene delivery, this study provides new insights into the structural impact of engineering plant genomes and demonstrates the utility of state-of-the-art long-range sequencing technologies to rapidly identify unanticipated genomic changes.