Project description:Gene expression profiling of Blastobotrys raffinosifermentans LS3 cells based on 6.025 annotated chromosomal Blastobotrys raffinosifermentans LS3 sequences and 36 putative mitochondrial gene oligos was performed following exposure to protocatechuic acid. Microarray data were successfully used to identify expression changes of main candidate genes involved in tannic acid degradation, protocatechuic acid degradation, β-oxidation, the glyoxylate cycle, the methyl citrate cycle and the catabolism of the branched-chain amino acids valine, leucine and isoleucine.
Project description:Gene expression profiling of Blastobotrys raffinosifermentans LS3 cells based on 6.025 annotated chromosomal Blastobotrys raffinosifermentans LS3 sequences and 36 putative mitochondrial gene oligos was performed following exposure to gallic acid. Microarray data were successfully used to identify expression changes of main candidate genes involved in tannic acid degradation, protocatechuic acid degradation, β-oxidation, the glyoxylate cycle, the methyl citrate cycle and the catabolism of the branched-chain amino acids valine, leucine and isoleucine.
Project description:4C procedure was used for analysis of genomic contacts of rDNA units in HEK 293T cells. The primers for 4C were selected inside IGS. Our data indicate that mostly rDNA units exhibit close proximity with pericentromeric regions in different chromosomes. We also detected the contacts within a rDNA unit and between rDNA units. Examination of rDNA genome-wide contacts in HEK 293T cells using 4C approach.
Project description:Over 2000 publicly accessible human and mouse ChIP-Seq datasets for about 250 Transcription Factors and chromatin complexes from various databases (ENCODE, GEO) were mapped to custom-made human and mouse genomes containing a reference rDNA sequence of the appropriate species (Genbank U13369.1 for human, BK000964.3 for mouse). The read mapping density across the rDNA sequence was then extracted and normalized to the median in that dataset. Unbiased clustering and analysis, followed by curation, was performed to identify high-confidence patterns of rDNA occupancy for numerous hematopoietic TFs and TF families at canonical TF motif sequences. ************************ Data processing steps: FASTQs were trimmed using Trimmomatic with the following parameters: LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:30 Reads were mapped to customized genomes (containing additional rDNA sequence) using Bowtie2 using the following parameter: -X 2000 Read density across the rDNA sequence was extracted using igvtools ************************
Project description:Xylanolytic enzyme systems in ascomycetous yeasts remain underexplored, despite the presence of yeasts in various xylan-rich ecological niches. In this study, we investigated the secreted xylanolytic machineries of three Blastobotrys species—B. mokoenaii, B. illinoisensis, and B. malaysiensis—by integrating genome annotation, bioinformatics, and secretome analyses of cultures grown on beechwood glucuronoxylan. Our findings demonstrate that these yeasts effectively hydrolyze xylan through the secretion of xylanases from the glycoside hydrolase (GH) family 11, which play a central role in cleaving the xylan backbone. Additionally, the yeasts produce a diverse array of other CAZymes, including members of GH families 3, 5, 30_7, and 67, with putative roles in xylan degradation. We also report on the heterologous expression and functional characterization of the GH30_7 xylanase BmXyn30A from B. mokoenaii, which exhibits both glucoronoxylanase and xylobiohydrolase activities. Distinct differences were observed in the xylooligosaccharide profiles generated by BmXyn30A compared to the previously characterized GH11 xylanase BmXyn11A. Furthermore, we demonstrate the synergistic effects between BmXyn30A and BmXyn11A during the hydrolysis of beechwood glucuronoxylan, where the enzymes exhibited complementary roles that enhanced the deconstruction of this complex hemicellulose substrate. These findings broaden our understanding of the xylanolytic systems in yeasts and underscore the potential of Blastobotrys species as cell factories and natural xylanase producers. The enzymes they produce hold promise for biorefining applications, enabling efficient utilization of renewable, xylan-rich plant biomass resources.
Project description:4C procedure was used for analysis of genomic contacts of rDNA units in HEK 293T cells. The primers for 4C were selected inside IGS. Our data indicate that mostly rDNA units exhibit close proximity with pericentromeric regions in different chromosomes. We also detected the contacts within a rDNA unit and between rDNA units.
Project description:To sustain growth, budding yeast actively transcribes its ribosomal gene array (rDNA) in the nucoleolus to produce ribosomes and proteins. However, intense transcription during rDNA replication may provoke collisions between RNA polymerase I (Pol I) and the replisome, may cause replication fork instability, double-strand breaks, local recombinations and rDNA instability. The latter is manifested by rDNA array expansion or reduction and the formation of extrachromosomal rDNA circles, anomalies that accelerate aging in yeast. Transcription also interferes with the resolution, condensation and segregation of the sister chromatid rDNA arrays. As a consequence, rDNA segregation lags behind the rest of the yeast genome and occurs in late anaphase when rDNA transcription is temporarily shut off. How yeast promotes the stability and transmission of its rDNA array while satisfying a constant need for ribosomes remains unclear. Here we show that the downregulation of Pol I by the conserved cell cycle kinase Rio1 spatiotemporally coordinates rDNA transcription, replication and segregation. More specifically, Rio1 activity promotes copy-number stability of the replicating rDNA array by curtailing Pol I activity and by localising the histone deacetylase Sir2, which establishes a heterochromatic state that silences rDNA transcription. At anaphase entry, Rio1 and the Cdc14 phosphatase target Pol I subunit Rpa43 to dissociate Pol I from the 35S rDNA promoter. The rDNA locus then condensates and segregates, thereby concluding the genome transmission process. Rio1 is involved in ribosome maturation in the cytoplasm of budding yeast and human cells. Additional engagements in the cytoplasm or roles in the nucleus are unknown. Our study describes its first nuclear engagement as a Pol I silencing kinase. This activity may prove highly relevant as dysregulated RNA polymerase I activity has been associated with cancer initiation and proliferation.