Project description:The rising prevalence of vancomycin-resistant enterococci (VRE) is a matter of concern in hospital settings across Europe without a distinct geographical pattern. In this scoping review, we compared the epidemiology of vancomycin-resistant Enterococcus spp. in hospitals in the Netherlands and Germany, between 1991 and 2022. We searched PubMed and summarized the national antibiotic resistance surveillance data of the two countries. We included 46 studies and summarized national surveillance data from the NethMap in the Netherlands, the National Antimicrobial Resistance Surveillance database in Germany, and the EARS-Net data. In total, 12 studies were conducted in hospitals in the Netherlands, 32 were conducted in German hospitals, and an additional two studies were conducted in a cross-border setting. The most significant difference between the two countries was that studies in Germany showed an increasing trend in the prevalence of VRE in hospitals, and no such trend was observed in studies in the Netherlands. Furthermore, in both Dutch and German hospitals, it has been revealed that the molecular epidemiology of VREfm has shifted from a predominance of vanA towards vanB over the years. According to national surveillance reports, vancomycin resistance in Enterococcus faecium clinical isolates fluctuates below 1% in Dutch hospitals, whereas it follows an increasing trend in German hospitals (above 20%), as supported by individual studies. This review demonstrates that VRE is more frequently encountered in German than in Dutch hospitals and discusses the underlying factors for the difference in VRE occurrence in these two neighboring countries by comparing differences in healthcare systems, infection prevention control (IPC) guidelines, and antibiotic use in the Netherlands and Germany.
Project description:Rhinoviruses (RVs) constitute a substantial public health burden. To evaluate their abundance and genetic diversity in adult patients, RV RNA in respiratory samples was assessed using real-time RT-PCR and the partial nucleic acid sequencing of viral genomes. Additionally, clinical data were retrieved from patient charts to determine the clinical significance of adult RV infections. In total, the respiratory specimens of 284 adult patients (18-90 years), collected from 2013 to 2017, were analyzed. Infections occurred throughout the entire year, with peaks occurring in fall and winter, and showed a remarkably high intra- and interseasonal diversity of RV genotypes. RV species were detected in the following ratios: 60.9% RV-A 173, 12.7% RV-B, and 26.4% RV-C. No correlations between RV species and underlying comorbidities such as asthma (p = 0.167), COPD (p = 0.312) or immunosuppression (p = 0.824) were found. However, 21.1% of the patients had co-infections with other pathogens, which were associated with a longer hospital stay (p = 0.024), LRTI (p < 0.001), and pneumonia (p = 0.01). Taken together, this study shows a pronounced genetic diversity of RV in adults and underlines the important role of co-infections. No correlation of specific RV species with a particular clinical presentation could be deduced.
Project description:Rhinoviruses (RVs) constitute a substantial public health burden. To evaluate their abundance and genetic diversity in pediatric patients, RV RNA in respiratory samples was assessed using real-time RT-PCR and partial nucleic acid sequencing of viral genomes. Additionally, clinical data were retrieved from patient charts to determine the clinical significance of pediatric RV infections. In total, the respiratory specimens of 776 patients (<18 years), collected from 2013 to 2017, were analyzed. Infections occurred throughout the entire year, with peaks occurring in fall and winter, and showed remarkably high intra- and interseasonal diversity for RV genotypes. RV species were detected in the following frequencies: 49.1% RV-A, 5.9% RV-B, and 43.6% RV-C. RV-C was found to be more frequently associated with asthma (p = 0.04) and bronchiolitis (p < 0.001), while RV-A was more frequently associated with fever (p = 0.001) and pneumonia (p = 0.002). Additionally, 35.3% of the patients had co-infections with other pathogens, which were associated with a longer hospital stay (p < 0.001), need for ventilation (p < 0.001), and pneumonia (p < 0.001). Taken together, this study shows pronounced RV genetic diversity in pediatric patients and indicates differences in RV-associated pathologies, as well as an important role for co-infections.
Project description:We profiled the DNA methylation of saliva cell types, to develop a tool for epidemiologic studies. Saliva was collected from 22 children, 21 participants with samples usable for DNA methylation, and sorted into immune and epithelial cells, using size exclusion filtration and magnetic bead sorting. DNA methylation was measured using the Illumina MethylationEPIC BeadChip. Saliva immune and epithelial cells have distinct DNA methylation profiles, which can influence whole saliva epidemiologic measures.
Project description:Little is known about the population structure of vancomycin-resistant Enterococcus faecium (VREfm) in Latin America (LATAM). Here, we provide a complete genomic characterization of 55 representative Latin American VREfm recovered from 1998-2015 in 5 countries. The LATAM VREfm population is structured into two main clinical clades without geographical clustering. Using the LATAM genomes, we reconstructed the global population of VREfm by including 285 genomes from 36 countries spanning from 1946 to 2017. In contrast to previous studies, our results show an early branching of animal related isolates and a further split of clinical isolates into two sub-clades within clade A. The overall phylogenomic structure of clade A was highly dependent on recombination (54% of the genome) and the split between clades A and B was estimated to have occurred more than 2,765 years ago. Furthermore, our molecular clock calculations suggest the branching of animal isolates and clinical clades occurred ~502 years ago whereas the split within the clinical clade occurred ~302 years ago (previous studies showed a more recent split between clinical an animal branches around ~74 years ago). By including isolates from Latin America, we present novel insights into the population structure of VREfm and revisit the evolution of these pathogens.
Project description:This study aimed to perform a genomic and epidemiology analysis on Legionella isolates to determine species and strain distribution in hospital environment according to isolation date, treatment employed to eradicate the bacteria, and place of isolation. We sequenced the whole genome of 101 isolates of Legionella pneumophila and 12 Legionella rubrilucens.