Project description:To compare the similarities and differences in species diversity of the gut microbiota between the patients with melasma and healthy subjects. The feces were collected for 16S rRNA sequencing analysis of the gut microbiota.
Project description:We report the association between CpG islander methylator phenotype (CIMP) and the gut microbiome in human colorectal cancer tumor and adjacent normal tissue.
Project description:We report the association between CpG islander methylator phenotype (CIMP) and the gut microbiome in human colorectal cancer tumor and adjacent normal tissue.
Project description:In this study we demonstrate that the DNA methylation status in both blood and adipose tissue is highly associated to gut microbiota composition in obese subjects
Project description:Gut microbiota dysbiosis characterizes systemic metabolic alteration, yet its causality is debated. To address this issue, we transplanted antibiotic-free conventional wild-type mice with either dysbiotic (“obese”) or eubiotic (“lean”) gut microbiota and fed them either a NC or a 72%HFD. We report that, on NC, obese gut microbiota transplantation reduces hepatic gluconeogenesis with decreased hepatic PEPCK activity, compared to non-transplanted mice. Of note, this phenotype is blunted in conventional NOD2KO mice. By contrast, lean microbiota transplantation did not affect hepatic gluconeogenesis. In addition, obese microbiota transplantation changed both gut microbiota and microbiome of recipient mice. Interestingly, hepatic gluconeogenesis, PEPCK and G6Pase activity were reduced even once mice transplanted with the obese gut microbiota were fed a 72%HFD, together with reduced fed glycaemia and adiposity compared to non-transplanted mice. Notably, changes in gut microbiota and microbiome induced by the transplantation were still detectable on 72%HFD. Finally, we report that obese gut microbiota transplantation may impact on hepatic metabolism and even prevent HFD-increased hepatic gluconeogenesis. Our findings may provide a new vision of gut microbiota dysbiosis, useful for a better understanding of the aetiology of metabolic diseases. all livers are from NC-fed mice only.
Project description:Postoperative ileus (POI) is a common clinical condition after abdominal surgical procedure, leading to increased patient morbidity and prolonged hospitalisation.The mechanism of POI is not very clear until now. At the end of the 20th century, the inflammatory-mediated ileus hypothesis was introduced. But the initial trigger of the inflammatory cascade is unclear.Previous study demonstrate a clear association between colonic transit time, gut microbiota composition and urinary metabolic phenotype. Here the investigators suggest that the perioperative gut microbiota may contribute to POI.
Project description:Increasing the consumption of dietary fibre has been proposed to alleviate the progression of non-communicable diseases such as obesity, type 2 diabetes and cardiovascular disease, yet the effect of dietary fibre on host physiology remains unclear. In this study, we performed a multiple diet feeding study in C57BL/6J mice to compare high fat and high fat modified with dietary fibre diets on host physiology and gut homeostasis by combining proteomic, metagenomic, metabolomic and glycomic techniques with correlation network analysis. We observed significant changes in physiology, liver proteome, gut microbiota and SCFA production in response to high fat diet. Dietary fibre modification did not reverse these changes but was associated with specific changes in the gut microbiota, liver proteome, SCFA production and colonic mucin glycosylation. Furthermore, correlation network analysis identified gut bacterial-glycan associations.