Project description:Naturally occurring and drug-induced DNA-protein crosslinks (DPCs) interfere with key DNA transactions if not timely repaired. The unique family of DPC-specific proteases Wss1/SPRTN targets DPC protein moieties for degradation, including topoisomerase-1 trapped in covalent crosslinks (Top1ccs). Here we describe that the efficient DPC disassembly requires Ddi1, another conserved predicted protease in Saccharomyces cerevisiae. We found Ddi1 in a genetic screen of the tdp1wss1 mutant defective in Top1cc processing. Ddi1 is recruited to a persistent Top1cc-like DPC lesion in an S-phase dependent manner to assist eviction of crosslinked protein from DNA. Loss of Ddi1 or its putative protease activity hypersensitize cells to DPC trapping agents independently from Wss1 and 26S proteasome, implying its broader role in DPC repair. Among potential Ddi1 targets we found the core component of RNAP II and show that its genotoxin-induced degradation is impaired in ddi1. Together, we propose that the Ddi1 protease contributes to DPC proteolysis. Yeast strains with WSS1 and DDI1 deletions were compared when either complemented with DDI1-WT or ddi1-D220A after hydroxyurea treatment by SILAC MS.
Project description:Rap1 (repressor-activator protein 1) is a multifunctional protein that controls telomere function, silencing and the activation of glycolytic and ribosomal protein genes. We have identified a novel function for Rap1, regulating the ribonucleotide reductase (RNR) genes that are required for DNA repair and telomere expansion. Both the C terminus and DNA-binding domain of Rap1 are required for the activation of the RNR genes, and the phenotypes of different Rap1 mutants suggest that it utilizes both regions to carry out distinct steps in the activation process. Recruitment of Rap1 to the RNR3 gene is dependent on activation of the DNA damage checkpoint and chromatin remodelling by SWI/SNF. The dependence on SWI/SNF for binding suggests that Rap1 acts after remodelling to prevent the repositioning of nucleosomes back to the repressed state. Furthermore, the recruitment of Rap1 requires TAF(II)s, suggesting a role for TFIID in stabilizing activator binding in vivo. We propose that Rap1 acts as a rheostat controlling nucleotide pools in response to shortened telomeres and DNA damage, providing a mechanism for fine-tuning the RNR genes during checkpoint activation.
Project description:Xbp1 has been shown to regulate the cell cycle as a transcriptional repressor in budding yeast Saccharomyces cerevisiae. In this study, we demonstrated that Xbp1 regulates DNA double-strand break (DSB) repair in S. cerevisiae. Xbp1 physically and genetically interacts with the histone deacetylase Rpd3 complex. Chromatin immunoprecipitation revealed that Xbp1 is required for efficient deacetylation of histone H4 flanking DSBs by the Rpd3 complex. Deletion of XBP1 leads to the delayed deacetylation of histone H4, which is coupled with increased nucleosome displacement, increased DNA end resection and decreased non-homologous end-joining (NHEJ). In response to DNA damage, Xbp1 is upregulated in a Mec1-Rad9-Rad53 checkpoint pathway-dependent manner and undergoes dephosphorylation. Cdk1, a central regulator of S. cerevisiae cell cycle, is responsible for Xbp1 phosphorylation at residues Ser146, Ser271 and Ser551. Substitution of these serine residues with alanine not only increases the association of Xbp1 with the Rpd3 complex and its recruitment to a DSB, but also promotes DSB repair. Together, our findings reveal a role for Xbp1 in DSB repair via NHEJ through regulation of histone H4 acetylation and nucleosome displacement in a positive feedback manner.
Project description:The Rad23/Rad4 protein complex plays a major role in DNA damage recognition during nucleotide excision repair (NER) in yeast. We recently showed that two distinct pathways contribute to efficient NER in yeast. The first operates independently of de novo protein synthesis and requires a nonproteolytic function of the 19S regulatory complex of the 26S proteasome and Rad23. The second pathway requires de novo protein synthesis, and relies on the activity of a newly identified E3 ubiquitin ligase that ubiquitinates Rad4 in response to UV. Surprisingly, we found that cells deleted of either Rad23 or Rad4 caused reduced Rad4 and Rad23 mRNA levels respectively. We considered the possibility of an unexpected role of Rad23 and Rad4 in regulating the expression of genes involved in the transcriptional response to DNA damage. Gene expression profiling has suggested that Rad23 and Rad4 may function as a complex to affect transcription of a small subset of genes in response to UV damage. To determine how Rad4 and Rad23 contribute to the regulation of these genes, we have examined the occupancy of Rad4/Rad23 in their promoter regions by chromatin immunoprecipitation (ChIP), both in the presence and absence of UV damage. Our preliminary ChIP data suggests that the Rad4/Rad23 complex regulates a set of genes in response to UV light.
Project description:ChIP-on chip assays to measure the change in histone acetylation over the yeast genome, in a SET2 deleted strain compared to the wild-type control. ChIPs of H3K9ac, H3K56ac and H4K12ac from wild-type and SET2 deleted cells were normalized to the H3 enrichment.
Project description:Over recent years, several Cys2-His2 (C2H2) domain-containing proteins have emerged as critical players in repairing DNA-double strand breaks. Human FLYWCH1 is a newly characterised nuclear transcription factor with (C2H2)-type zinc-finger DNA-binding domains. Yet, our knowledge about FLYWCH1 is still in its infancy. This study explores the expression, role and regulation of FLYWCH1 in the context of DNA damage and repair. We provide evidence suggesting a potential contribution of FLYWCH1 in facilitating the recruitment of DNA-damage response proteins (DDRPs). We found that FLYWCH1 colocalises with γH2AX in normal fibroblasts and colorectal cancer (CRC) cell lines. Importantly, our results showed that enforced expression of FLYWCH1 induces the expression of γH2AX, ATM and P53 proteins. Using an ATM-knockout (ATMKO) model, we indicated that FLYWCH1 mediates the phosphorylation of H2AX (Ser139) independently to ATM expression. On the other hand, the induction of DNA damage using UV-light induces the endogenous expression of FLYWCH1. Conversely, cisplatin treatment reduces the endogenous level of FLYWCH1 in CRC cell lines. Together, our findings uncover a novel FLYWCH1/H2AX phosphorylation axis in steady-state conditions and during the induction of the DNA-damage response (DDR). Although the role of FLYWCH1 within the DDR machinery remains largely uncharacterised and poorly understood, we here report for the first-time findings that implicate FLYWCH1 as a potential participant in the DNA damage response signaling pathways.
Project description:ChIP-on chip assays to measure the change in histone exchange or histone acetylation over the yeast genome, in a SET2 deleted strain compared to the wild-type control. ChIP of Flag and Acetylated H4 from wild-type and SET2 deleted cells were normalized to the Myc enrichment.
Project description:DNA-protein crosslinks (DPCs) are a specific type of DNA lesion in which proteins are covalently attached to DNA. Unrepaired DPCs lead to genomic instability, cancer, neurodegeneration, and accelerated aging. DPC proteolysis was recently identified as a specialized pathway for DPC repair. The DNA-dependent protease SPRTN and the 26S proteasome emerged as two independent proteolytic systems. DPCs are also repaired by homologous recombination (HR), a canonical DNA repair pathway. While studying the cellular response to DPC formation, we identify ubiquitylation and SUMOylation as two major signaling events in DNA replication-coupled DPC repair. DPC ubiquitylation recruits SPRTN to repair sites, promoting DPC removal. DPC SUMOylation prevents DNA double-strand break formation, HR activation, and potentially deleterious genomic rearrangements. In this way, SUMOylation channels DPC repair toward SPRTN proteolysis, which is a safer pathway choice for DPC repair and prevention of genomic instability.
Project description:Repair of covalent DNA-protein crosslinks (DPCs) by the metalloprotease SPRTN prevents genome instability, premature aging and carcinogenesis. SPRTN is specifically activated by DNA structures containing single- and double-stranded features, but degrades the protein components of DPCs promiscuously and independent of amino acid sequence. This lack of specificity is useful to target diverse protein adducts, however, it requires tight control in return, in order to prohibit uncontrolled proteolysis of chromatin proteins. Here, we discover the components and principles of a ubiquitin switch, which negatively regulates SPRTN. We demonstrate that monoubiquitylation is induced in an E3 ligase-independent manner and, in contrast to previous assumptions, does not control chromatin access of the enzyme. Data obtained in cells and in vitro reveal that monoubiquitylation induces inactivation of the enzyme by triggering autocatalytic cleavage in trans while also priming SPRTN for proteasomal degradation in cis. Finally, we show that the deubiquitylating enzyme USP7 antagonizes this negative control of SPRTN in the presence of DPCs.
Project description:Proteome analysis of a conditional GroE expression strain and its variants. Proteome data for the dnaKJ-deleted strain and its variant were also included.