Project description:Diagnostic primer extension assay to serotype Streptococcus pneumoniae. Assay validation. Background: Monitoring of Streptococcus pneumoniae serotype epidemiology is essential since serotype replacement is a concern when introducing new polysaccharide-conjugate vaccines. To simplify S. pneumoniae serotyping, a novel PCR-based automated microarray assay was developed to assist in the tracking of the serotypes. Results: Autolysin (lytA), pneumolysin (ply) and eight genes located in the capsular operon (cps) were amplified using multiplex PCR. This step was followed by a tagged fluorescent primer extension step targeting serotype-specific polymorphisms. The tagged primers were then hybridized to a microarray. Results were exported to an expert system that transforms genetic typing data into capsular serotype identification. The assay was validated on 166 cultured S. pneumoniae samples from 63 different serotypes as determined by the Quellung method. In addition, the assay was tested on clinical specimens including 43 cerebrospinal fluid samples from patients with meningitidis and 59 nasopharyngeal aspirates from bacterial pneumonia patients. The assay presented with no cross-reactivity for 24 relevant bacterial species found in these types of samples. The limit of detection for serotyping and S. pneumoniae detection was 100 genome equivalent per reaction. Conclusion: This automated assay is amenable to clinical testing and does not require any culturing of the samples. The assay will be useful for the evaluation of serotype prevalence changes after new conjugate vaccines introduction.
Project description:Diagnostic primer extension assay to serotype Streptococcus pneumoniae. Assay validation. Background: Monitoring of Streptococcus pneumoniae serotype epidemiology is essential since serotype replacement is a concern when introducing new polysaccharide-conjugate vaccines. To simplify S. pneumoniae serotyping, a novel PCR-based automated microarray assay was developed to assist in the tracking of the serotypes. Results: Autolysin (lytA), pneumolysin (ply) and eight genes located in the capsular operon (cps) were amplified using multiplex PCR. This step was followed by a tagged fluorescent primer extension step targeting serotype-specific polymorphisms. The tagged primers were then hybridized to a microarray. Results were exported to an expert system that transforms genetic typing data into capsular serotype identification. The assay was validated on 166 cultured S. pneumoniae samples from 63 different serotypes as determined by the Quellung method. In addition, the assay was tested on clinical specimens including 43 cerebrospinal fluid samples from patients with meningitidis and 59 nasopharyngeal aspirates from bacterial pneumonia patients. The assay presented with no cross-reactivity for 24 relevant bacterial species found in these types of samples. The limit of detection for serotyping and S. pneumoniae detection was 100 genome equivalent per reaction. Conclusion: This automated assay is amenable to clinical testing and does not require any culturing of the samples. The assay will be useful for the evaluation of serotype prevalence changes after new conjugate vaccines introduction. 166 quellung serotyped strains and two negative controls
Project description:The capsular serotype has long been associated with the virulence of Streptococcus pneumoniae. Here we present an in-depth study of phenotypic and genetic differences between serotype 3 and serogroup 11 S. pneumoniae clinical isolates from both the general and indigenous populations of Australia. Both serotypes/groups included clonally unrelated strains with differences in well-known polymorphic virulence genes, such as nanA and pspA, as demonstrated by multilocus sequence typing and Western blot analysis. Nonetheless, the serotype 3 strains were consistently and significantly more virulent in mice than the serogroup 11 strains. Despite extensive genomic analysis, noncapsular genes common to one serotype/group but not the other were not identified. Nevertheless, following the conversion of a serotype 11A isolate to serotype 3 and subsequent analysis in an intranasal infection model, it was evident that both capsular and noncapsular factors determine the virulence phenotype in mice. However, it appears that these noncapsular factors vary from strain to strain. Data is also available from http://bugs.sgul.ac.uk/E-BUGS-126
Project description:This study investigates the global transcriptional response of Streptococcus pneumoniae D39V (serotype 2 strain) to human blood components and CSF acquired from discarded and anonymized patient samples.
Project description:Streptococcus pneumoniae (the pneumococcus) account for significant morbidity and mortality worldwide, causing life-threatening diseases such as pneumonia, bacteremia and meningitis. In this study, we used microarray analysis to compare gene expression patterns of either serotype 4 or serotype 6A pneumococci in the nasopharynx and blood of mice, as a model to identify genes involved in invasion of blood in the context of occult bacteremia in humans. Microarray experiments were performed on whole genome S. pneumoniae PCR arrays obtained from the Bacterial Microarray Group at St George's Hospital Medical School, London (http://bugs.sghms.ac.uk/). The array was designed using TIGR4 base strain annotation and extra target genes from strain R6. Pair-wise comparisons were made between the nasopharynx and blood RNA samples labeled with either Alexa Fluor 546 or Alexa Fluor 647 dye from the 48, 72 and 96 h time points.
Project description:Mouse lung RNAseq after infection with Influenza A virus (H1N1, PR/8/34, mouse-adapted) and Streptococcus pneumoniae (serotype 19F, strain BHN 100) Results: Differentially expressed genes were observed after single and co-infection Project: COST_mouse_2021_lung
Project description:Mouse blood transcriptome after infection with Influenza A virus (H1N1, PR/8/34, mouse-adapted) and Streptococcus pneumoniae (serotype 19F, strain BHN 100) Results: Differentially expressed genes were observed after single and co-infection Project: COST_mouse_2021