Project description:Porphyromonas gingivalis and Treponema denticola are periodontalpathogens that are associated with the severity and progression of periodontal diseases. This study investigates the gene expression of Porphyromonas gingivalis during co-culture with Treponema denticola
Project description:Porphyromonas gingivalis and Treponema denticola are periodontalpathogens that are associated with the severity and progression of periodontal diseases. this study investigates the gene expression of Treponema denticola during co-culture with Porphyromonas gingivalis.
Project description:Wild type Porphyromonas gingivalis strain ATCC33277 (V3176) and PG1626 - deficient mutant (V3177) were grown in iron replete conditions was used to compare to Porphyromonas gingivalis strains grown in iron chelated conditions.
Project description:Recent epidemiological studies revealed a significant association between oral squamous cell carcinoma (OSCC) and Porphyromonas gingivalis, a major pathogen of periodontal disease. As a keystone pathogen, P. gingivalis is known not only to damage local periodontal tissue, but also to evade from the host immune system and eventually affect systemic health. However, its role in OSCC has yet to be well studied. To explore the underlying effect of chronic P. gingivalis infection on OSCC and to identify relevant biomarkers as promising targets for therapy and prevention, we established a novel model by exposing human immortalized oral epithelial cells (HIOECs) to P. gingivalis at a low MOI for 5 to 23 weeks. The P. gingivalis-infected HIOECs were monitored in tumor biological alteration. Bioinformatics analyses were performed on HIOECs infected for 15 weeks, and some selected data were validated by q-PCR and (or) Western blot on cells infected for 15 and 23 weeks. Accordingly, we found that persistent exposure to P. gingivalis induced tumor biological properties on HIOECs. Tumor-related genes such as NNMT, FLI1, GAS6, lncRNA CCAT1, PDCD1LG2 and CD274 were aberrantly expressed in response to long-term exposure of P. gingivalis. In addition, some clinical biomarkers and novel proteins were presented. In conclusion, chronic P. gingivalis infection may be a potential risk factor of OSCC. The key regulators and biomarkers might be used in monitoring OSCC with chronic periodontal infection. We applied lncRNA Microarray (Affymetrix) which could simultaneously detect coding and non-coding genes to explore the differences of cell gene expression after long-term exposure to P. gingivalis.
Project description:We use high through put RNA sequenceing technology to study the genome-wide expression profile in an oral pathogen Filifactor alocis when co-cultured with another key-stone oral pathogen Porphyromonas gingivalis under anaerobic conditions and oxidative stress conditions.
Project description:Genotyping studies suggest that there is genetic variability among P. gingivalis strains, however the extent of variability remains unclear, and the regions of variability have only partially been identified. We previously used heteroduplex analysis of the ribosomal operon intergenic spacer region (ISR) to type P. gingivalis strains in several diverse populations, identifying 6 predominant heteroduplex types and many minor ones. In addition we used ISR sequence analysis to determine the relatedness of P. gingivalis strains to one another, and demonstrated a link between ISR sequence phylogeny and the disease-associated phenotype of P. gingivalis strains. The availability of whole genome microarrays based on the genomic sequence of strain W83 has allowed a more comprehensive analysis of P. gingivalis strain variability, using the entire genome. The objectives of this study were to define the phylogeny of P. gingivalis strains using the entire genome, to compare the phylogeny based on genome content to the phylogeny based on a single locus (ISR), and to identify genes that are associated with the strongly disease-associated strain W83 that could be important for virulence. Keywords: Comparative genomic hybridization
Project description:To determine the biological mechanisms underlying a dampened immune response to Porphyromonas gingivalis, as compared to Aggregatibacter actinomycetemcomitans challenge, we infected primary BMDCs with either pathogen or left uninfected Total RNA from uninfected BMDCs compared to BMDCs infected with either Aggregatibacter actinomycetemcomitans or Porphyromonas gingivalis
Project description:Porphyromonas gingivalis is a pathogen in severe periodontal disease. Able to exploit an intracellular lifestyle within primary gingival epithelial cells (GECs), a reservoir of P. gingivalis can persist within the gingival epithelia. This process is facilitated by manipulation of the host cell signal transduction cascades which can impact cell cycle, cell death and cytokine responses. Using microarrays, we investigated the ability of P. gingivalis 33277 to regulate microRNA (miRNA) expression in GECs. One of several miRNAs differentially regulated by GECs in the presence of P. gingivalis was miR-203, which was upregulated 4-fold compared with uninfected controls. Differential regulation of miR-203 was confirmed by qRT-PCR. Putative targets of miR-203, suppressors of cytokine signaling (SOCS) 3 and 6, were evaluated by qRT-PCR. SOCS3 and SOCS6 mRNA levels were reduced >5-fold and >2-fold, respectively, in P. gingivalis-infected GECs compared with controls. Silencing miR-203 using a si-RNA construct reversed the inhibition of SOCS3 expression. A dual luciferase assay confirmed binding of miR-203 to the putative target binding site of SOCS3 3’ UTR. Western blot analysis demonstrated that activation of Stat3, a downstream target of SOCS, was diminished following miR-203 silencing. This study shows that induction of miRNAs by P. gingivalis can modulate important host signaling responses.