Project description:Aging is a major risk factor for cardiovascular disease. Although the impact of aging has been extensively studied, little is known regarding the aging processes in cells of the heart. Here we analyzed the transcriptomes of hearts of 12-week-old and 18-month-old mice by single-nucleus RNA-sequencing. Among all cell types, aged fibroblasts showed most significant differential gene expression, increased RNA dynamics, and network entropy. Aged fibroblasts exhibited significantly changed expression patterns of inflammatory, extracellular matrix organization angiogenesis, and osteogenic genes. Functional analyses indicated deterioration of paracrine signatures between fibroblasts and endothelial cells in old hearts. Aged heart-derived fibroblasts had impaired endothelial cell angiogenesis and autophagy and augmented proinflammatory response. In particular, expression of Serpine1 and Serpine2 were significantly increased and secreted by old fibroblasts to exert antiangiogenic effects on endothelial cells, an effect that could be significantly prevented by using neutralizing antibodies. Moreover, we found an enlarged subpopulation of aged fibroblasts expressing osteoblast genes in the epicardial layer associated with increased calcification. Taken together this study provides system-wide insights and identifies molecular changes of aging cardiac fibroblasts, which may contribute to declined heart function.
Project description:To identify the gene regulatory network during heart aging, we used the RNA-seq to analyze the gene expression profile difference between adult mouse heart and aging mouse heart.
Project description:Sustained caloric restriction (CR) extends lifespan in animal models but the mechanism and primary tissue target(s) have not been identified. Gene expression changes with aging and CR were examined in both heart and subcutaneous white adipose tissue (WAT) of F344 male rats using Affymetrix® RAE 230 arrays and validated by qRT-PCR on 18 genes. In heart, age- associated changes but not CR-associated changes in old. In WAT, genes were identified where the aging change is suppressed by CR (candidate markers of healthy aging) and those affected by CR but not normal aging (candidate longevity assurance genes). 10-21% of age-associated genes were regulated in common between tissues. Gene set enrichment analysis (GSEA) revealed coordinate small magnitude changes in ribosomal, proteasomal, and mitochondrial genes with similarities between heart and WAT. Further analysis revealed PPARgamma as a potential upstream regulator of altered gene expression in old CR WAT. These results demonstrate a reduced mRNA response to CR with age in heart relative to WAT. In WAT, we identified candidate CR mimetic targets and candidate markers of healthy aging. These data suggest a role for subcutaneous WAT in the effects of CR and strengthen the role for PPAR signaling in aging and CR while indicating that the effects of CR in heart can occur independent of global changes in mRNA level. Keywords: Aging Caloric Restriction
Project description:Hutchinson-Gilford progeria syndrome (HGPS) is a rare and fatal human premature aging disease1-5, characterized by premature atherosclerosis and degeneration of vascular smooth muscle cells (SMCs)6-8. HGPS is caused by a single-point mutation in the LMNA gene, resulting in the generation of progerin, a truncated mutant of lamin A. Accumulation of progerin leads to various aging-associated nuclear defects including disorganization of nuclear lamina and loss of heterochromatin9-12. Here, we report the generation of induced pluripotent stem cells (iPSCs) from fibroblasts obtained from patients with HGPS. HGPS-iPSCs show absence of progerin, and more importantly, lack the nuclear envelope and epigenetic alterations normally associated with premature aging. Upon differentiation of HGPS-iPSCs, progerin and its associated aging consequences are restored. In particular, directed differentiation of HGPS-iPSCs to SMCs leads to the appearance of premature senescent SMC phenotypes associated with vascular aging. Additionally, our studies identify DNA-dependent protein kinase catalytic subunit (DNAPKcs) as a component of the progerin-containing protein complex. The absence of nuclear DNAPKcs correlates with premature as well as physiological aging. Since progerin also accumulates during physiological aging6,12,13, our results provide an in vitro iPSC-based model with an acceleration progerin accumulation to study the pathogenesis of human premature and physiological vascular aging. Microarray gene expression profiling was done to: (1) Compare differences between WT fibroblasts and fibroblasts from patients suffering of the Hutchinson-Gilford progeria syndrome (2) Check that iPSC originating from WT and patients are in fact similar to ESC
Project description:Meta analysis of transcriptome to reveal aging-related transcritionl alterations in zebrafish heart and provide candidate genes for development of model of premature cardiac aging