Project description:Species identification of fragmentary bones remains a challenging task in archeology and forensics. A species identification method for such fragmentary bones that has recently attracted interest is the use of bone collagen proteins. We developed a method similar to DNA barcoding that reads collagen protein sequences in bone and automatically determines the species by performing sequence database searches. We tested our method using bone samples from 30 vertebrate species ranging from mammals to fish.
Project description:By using DNA barcoding to trace individual cancer cells from the 4T1 murine model of cancer, we were able to identify two cancer cell clones that were highly immune evasive and resistant to immune destruction both by the endogenous immune system and when treating with immunotherapy. We isolated these clones (IE1 and IE2) from the bulk parental population for further characterisation. We wondered if copy number variations could explain the phenotype we observed, so we carried out WGS to investigate this.
Project description:We describe the development of a high-sensitivity protein quantification system called HaloTag protein barcoding assay. The assay involves target protein linking to a unique molecule-counting oligonucleotide by click chemistry.
Project description:A functional biodiversity microarray (EcoChip) prototype has been developed to facilitate the analysis of fungal communities in environmental samples with broad functional and phylogenetic coverage and to enable the incorporation of nucleic acid sequence data as they become available from large-scale (next generation) sequencing projects. A dual probe set (DPS) was designed to detect a) functional enzyme transcripts at conserved protein sites and b) phylogenetic barcoding transcripts at ITS regions present in precursor rRNA. Deviating from the concept of GeoChip-type microarrays, the presented EcoChip microarray phylogenetic information was obtained using a dedicated set of barcoding microarray probes, whereas functional gene expression was analyzed by conserved domain-specific probes. By unlinking these two target groups, the shortage of broad sequence information of functional enzyme-coding genes in environmental communities became less important. The novel EcoChip microarray could be successfully applied to identify specific degradation activities in environmental samples at considerably high phylogenetic resolution. Reproducible and unbiased microarray signals could be obtained with chemically labeled total RNA preparations, thus avoiding the use of enzymatic labeling steps. ITS precursor rRNA was detected for the first time in a microarray experiment, which confirms the applicability of the EcoChip concept to selectively quantify the transcriptionally active part of fungal communities at high phylogenetic resolution. In addition, the chosen microarray platform facilitates the conducting of experiments with high sample throughput in almost any molecular biology laboratory. In this study, two independent RNA samples from a pine forest soil were labelled and hybridised to a custom-made EcoChip microarray consisting of about 9000 probes targeting expressed fungals genes and about 5000 probes targeting the precursor-rRNA of different fungal lineages
Project description:It is elusive whether clonal selection of tumor cells in response to ionizing radiation (IR) is a deterministic or stochastic process. With high resolution clonal barcoding and tracking of over 400.000 HNSCC patient-derived tumor cells the clonal dynamics of tumor cells in response to IR was analysed. Fractionated IR induced a strong selective pressure for clonal reduction. This significantly exceeded uniform clonal survival probabilities indicative for a strong clone-to clone difference within tumor cells. Survival to IR is driven by a deterministic clonal selection of a smaller population which commonly survives radiation, while increased clonogenic capacity is a result of clonal competition of cells which have been selected stochastically. The ratio of these parameters is amenable to radiation sensitivity which correlates to prognostic biomarkers of HNSCC. Evidence for the existence of a rare subpopulation with an intrinsically radiation resistant phenotype was found at a frequency of 0.6-3.3%. With cellular barcoding we introduce a novel functional heterogeneity associated qualitative readout for evaluating the contribution of stochastic and deterministic clonal selection processes in response to IR.