Project description:Species identification of fragmentary bones remains a challenging task in archeology and forensics. A species identification method for such fragmentary bones that has recently attracted interest is the use of bone collagen proteins. We developed a method similar to DNA barcoding that reads collagen protein sequences in bone and automatically determines the species by performing sequence database searches. We tested our method using bone samples from 30 vertebrate species ranging from mammals to fish.
Project description:These findings establish minion as a novel microprotein required for muscle development, and define a two-component program for the induction of mammalian cell fusion.
Project description:To evaluate targeted MinION next generation sequencing as a diagnostic method for detection of pathogens in human blood and plasma, human blood or plasma samples were spiked with measured amounts of viruses, bacteria, protozoan parasites or tested pathogen-free as negative controls. Nucleic acid was extracted from samples and PCR amplification performed in multiplex primer pools with a procedure described in ArrayExpress experiment submission ID 18379. The PCR products were used for library preparation. The libraries sequenced on an Oxford Nanopore MinION. The passed reads aligned with a custom reference file to determine the identity of the pathogen in the sample.
Project description:Healthy plants are vital for successful, long-duration missions in space, as they provide the crew with life support, food production, and psychological benefits. The microorganisms that associate with plant tissues play a critical role in improving plant growth, health, and production. To that end, it is necessary to develop methodologies that investigate the metabolic activities of the plant’s microbiome in orbit to enable rapid responses regarding the care of plants in space. In this study, we developed a protocol to characterize the endophytic and epiphytic microbial metatranscriptome of red romaine lettuce, a key salad crop that was grown under International Space Station (ISS)-like conditions. Microbial transcripts enriched from host-microbe total RNA were sequenced using the Oxford Nanopore MinION sequencing platform. Results showed that this enrichment approach was highly reproducible and effective for rapid on-site detection of microbial transcriptional activity. Taxonomic analysis based on 16S and 18S rRNA transcripts identified that the top five most abundant phyla in the lettuce microbiome were Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, and Ascomycota. The metatranscriptomic analysis identified the expression of genes involved in many metabolic pathways, including carbohydrate metabolism, energy metabolism, and signal transduction. Network analyses of the expression data show that, within the signal transduction pathway of the fungal community, the Mitogen-Activated Protein Kinase signaling pathway was tightly regulated across all samples and could be a potential driver for fungal proliferation. Our results demonstrated the feasibility of using MinION-based metatranscriptomics of enriched microbial RNA as a method for rapid, on-site monitoring of the transcriptional activity of crop microbiomes, thereby helping to facilitate and maintain plant health for on-orbit space food production.