Project description:Proteome of corn roots exposed to drought and ambient soil moisture treatments, as affected by cross-inoculation of rhizobiota from a congeneric species.
Publication DOI: https://doi.org/10.1111/tpj.15775
Project description:12plex_medicago_2014_02 - nar nodule vs root transcriptome - which are the genes differentially expressed in alfalfa spontaneous (non rhizobium-infected) nodules vs. control roots? - biological material: aeroponically grown cuttings of a Medicago sativa (alfalfa) accession that produces empty nodules when nitrogen-starved. Samples for transcriptome comparison: isolated NAR nodules (10 days post N-starvation) vs. roots of the same plants (pools of 3 roots).
Project description:This study aims to determine the epidemiology of Enterobacteriaceae resistant to antibiotics of last resort in pregnant women in labour at a tertiary hospital, Pretoria, South Africa. Rectal swabs shall be used to screen for colonisation with CRE and colistin-resistant Enterobacteriales in pregnant women during labour. Carbapenem and colistin-resistant Enterobacterales can cause the following infections: bacteraemia; nosocomial pneumonia; urinary tract infections, and intra-abdominal infections. Due to limited treatment options, infections caused by these multidrug-resistant organisms are associated with a mortality rate of 40-50%. Screening for colonisation of carbapenem-resistant Enterobacteriaceae (CRE) and colistin-resistant Enterobacteriaceae will help implement infection and prevention measures to limit the spread of these multidrug-resistant organisms.
Project description:The Enterobacteriaceae are a scientifically and medically important clade of bacteria, containing the gut commensal and model organism Escherichia coli, as well as several major human pathogens including Salmonella enterica and Klebsiella pneumoniae. Essential gene sets have been determined for several members of the Enterobacteriaceae, and the E. coli Keio single-gene deletion library is often regarded as a gold standard for gene essentiality studies. However, it remains unclear how much essential genes vary between strains and species. To investigate this, we have assembled a collection of thirteen sequenced high-density transposon mutant libraries from five genera of the Enterobacteriaceae. We first benchmark a number of gene essentiality prediction approaches, investigate the effects of transposon density on essentiality prediction, and identify biases in transposon insertion sequencing data. Based on these investigations we develop a new classifier for gene essentiality. Using gene essentiality defined by this new classifier, we define a core essential genome in the Enterobacteriaceae of 201 universally essential genes, and reconstruct an ancestral essential gene set of 296 genes. Despite the presence of a large cohort of variably essential genes, we find an absence of evidence for genus-specific essential genes. A clear example of this sporadic essentiality is given by the set of genes regulating the σE extracytoplasmic stress response, which appears to have independently become essential multiple times in the Enterobacteriaceae. Finally, we compare our essential gene sets to the natural experiment of gene loss in obligate insect endosymbionts closely related to the Enterobacteriaceae. This isolates a remarkably small set of genes absolutely required for survival, and uncovers several instances of essential stress responses masked by redundancy in free-living bacteria.