Project description:Comparative metabolomics study of fungal foliar endophytes and their long-lived host, the Rainforest palm Astrocaryum sciophilum: a model for deciphering host-microbe interactions and exploring metabolite chemodiversity.
2021-12-05 | MSV000088516 | MassIVE
Project description:The host genotype actively shapes its microbiome across generations
Project description:Sclerotinia sclerotiorum, the causal agent of white mould, is a necrotrophic fungal pathogen responsible for extensive crop loss. Current control options rely heavily on the application of chemical fungicides that are becoming less effective and may lead to the development of fungal resistance. In the current study, we used a foliar spray application of boron to protect Brassica napus (canola) from S. sclerotiorum infection using whole plant infection assays. Application of boron to aerial surfaces of the canola plant reduced the number of S. sclerotiorum forming lesions by 87% compared to an untreated control. We used dual RNA sequencing to profile the effect of boron on both the host plant and fungal pathogen during the infection process. Differential gene expression analysis and gene ontology term enrichment further revealed the mode of action of a foliar boron spray at the mRNA level. A single foliar application of boron primed the plant defense response through the induction of genes associated with systemic acquired resistance while an application of boron followed by S. sclerotiorum infection induced genes associated with defense-response-related cellular signalling cascades. Additionally, in S. sclerotiorum inoculated on boron-treated B. napus, we uncovered gene activity in response to salicylic acid breakdown, consistent with salicylic-acid-dependent systemic acquired resistance induction within the host plant. Taken together, this study demonstrates that a foliar application of boron results in priming of the B. napus plant defense response, likely through systemic acquired resistance, thereby contributing to increased tolerance to S. sclerotiorum infection.
Project description:Comparative metabolomics study of fungal foliar endophytes and their long-lived host, the Rainforest palm Astrocaryum sciophilum: a model for deciphering host-microbe interactions and exploring metabolite chemodiversity.
Project description:The “Amoeboid Predator-Fungal Animal Virulence Hypothesis” posits that interactions with environmental phagocytes shape the evolution of virulence traits in fungal pathogens. In this hypothesis, selection to avoid predation by amoeba inadvertently selects for traits that contribute to fungal escape from phagocytic immune cells. Here, we investigate this hypothesis in the human fungalpathogens Cryptococcus neoformans and Cryptococcus deneoformans. Applying quantitative trait locus (QTL) mapping and comparative genomics, we discovered a cross-species QTL region that is responsible for variation in resistance to amoeba predation. In C. neoformans, this same QTL was found to have pleiotropic effects on melanization, an established virulence factor. Through fine mapping and population genomic comparisons, we identified the gene encoding the transcription factor BZP4 that underlies this pleiotropic QTL and we show that decreased expression of this gene reduces melanization and increases susceptibility to amoeba predation. Despite the joint effects of BZP4 on amoeba resistance and melanin production, we find no relationship between BZP4 genotype and escape from macrophages or virulence in murine models of disease. Our findings provide new perspectives on how microbial ecology shapes the genetic architecture of fungal virulence, and suggests the need for more nuanced models for the evolution of pathogenesis that account for the complexities of both microbe-microbe and microbe-host interactions.
Project description:The gut microbiome shapes local and systemic immunity. The liver is presumed to be a protected sterile site. As such, a hepatic microbiome has not been examined. Here, we show that the liver hosts a robust microbiome in mice and humans that is distinct from the gut and is enriched in Proteobacteria. It undergoes dynamic alterations with age and is influenced by the environment and host physiology. Fecal microbial transfer experiments revealed that the liver microbiome is populated from the gut in a highly selective manner. Hepatic immunity is dependent on the microbiome, specifically Bacteroidetes species. Targeting Bacteroidetes with oral antibiotics reduced the hepatic immune cell infiltrate by ~90%, prevented APC maturation, and mitigated adaptive immunity. Mechanistically, presentation of Bacteroidetes-derived glycosphingolipids to NKT cells promotes CCL5 signaling, which drives hepatic leukocyte expansion and maturation. Collectively, we reveal a microbial – glycosphingolipid – NKT – CCL5 axis that underlies hepatic immunity.
Project description:The transcriptome of Melampsora larici-populina was analysed in telia (in planta sample, early telia harvested before overwintering), uredinia (in planta sample, 168 hours post-inoculation, hpi), in planta during biotrophic growth (96 hpi) and in resting urediniospores. The array probes were designed from gene models taken from the Joint Genome Institute (JGI, Department of Energy) Melampsora larici-populina genome sequence version 1. The aim of this study was to determine gene expression in early telia formed in decaying poplar leaves in autumn before the overwintering process and to compare this expression with other stages of the poplar rust life cycle that were previously described (i.e., resting urediniospores as pure fungal material, and uredinia and biotrophic growth stage as poplar leaf infecting fungal structures). This study should highlight telia-specific transcripts and contribute to the understanding of the poplar rust biological cycle.
Project description:Magnaporthe oryzae causes rice blast, the most devastating foliar fungal disease of cultivated rice. During disease development the fungus simultaneously maintains both biotrophic and necrotrophic growth corresponding to a hemi-biotrophic life style. The ability of M. oryzae to also colonize roots and subsequently develop blast symptoms on aerial tissue has been recognized. The fungal root infection strategy and the respective host responses are currently unknown. Global temporal expression analysis suggested a purely biotrophic infection process reflected by the rapid induction of defense response-associated genes at the early stage of root invasion and subsequent repression coinciding with the onset of intracellular fungal growth. The same group of down-regulated defense genes was increasingly induced upon leaf infection by M. oryzae where symptom development occurs shortly post tissue penetration. Our molecular analysis therefore demonstrates the existence of fundamentally different tissue-specific fungal infection strategies and provides the basis for enhancing our understanding of the pathogen life style.
Project description:We revealed that a rhamnolipid protects wheat against the hemibiotrophic fungal pathogen Zymoseptoria tritici. Foliar application of the biomolecule primes, during the early stages of infection, the expression of genes associated with different functional groups of genes.