Project description:Excess/residual urea is a pervasion problem in wine and Sake fermentation. We sought to reduce residual urea levels (to reduce ethyl carbamate leves) by engineering the Sake yeast strain K7 to constitutively express either the urea amidolyase (Dur1,2) or urea importer (Dur3). We sought to then compare the gene expression profiles of the metabolically engineered yeast strains to the parental strain during fermentation. Engineered strains would hopefully have gene expression profiles that were minimally different from the parental strain.
Project description:The goal of this Whole Genome Sequencing (WGS) analysis was to identify genes underlying TCS in C. elegans strain expressing the gut-specific hsp-90 hairpin RNAi construct compared to a control strain (strain AM994). To do this we performed a forward genetic screen using the mutagen EMS and screened progeny for reduced TCS-mediated expression of the hsp-70p::mCherry reporter in muscle cells.
Project description:Excess/residual urea is a pervasion problem in wine and Sake fermentation. We sought to reduce residual urea levels (to reduce ethyl carbamate leves) by engineering the Sake yeast strain K7 to constitutively express either the urea amidolyase (Dur1,2) or urea importer (Dur3). We sought to then compare the gene expression profiles of the metabolically engineered yeast strains to the parental strain during fermentation. Engineered strains would hopefully have gene expression profiles that were minimally different from the parental strain. Yeast strains were used to ferment Chardonnay grape must and total RNA harvested at 24 hrs into fermentation. 10 ug of total RNA was made into cDNA, and then labelled cRNA, with the Affymetrix GeneChip one cycle target amplification and labelling system. Fragmented cRNA was then hybridized to an Affymetrix YGS98 array in biological duplicate.
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:Whole-genome sequencing on PacBio of laboratory mouse strains. See http://www.sanger.ac.uk/resources/mouse/genomes/ for more details. This data is part of a pre-publication release. For information on the proper use of pre-publication data shared by the Wellcome Trust Sanger Institute (including details of any publication moratoria), please see http://www.sanger.ac.uk/datasharing/