Project description:Tree ring features are affected by environmental factors and therefore are the basis for dendrochronological studies to reconstruct past environmental conditions. Oak wood often provides the data for these studies because of the durability particularly of oak heartwood and, hence the availability of samples spanning long time periods of the distant past. Wood formation is regulated in part by epigenetic mechanisms such as DNA methylation. Studies in the methylation state of DNA preserved in oak heartwood thus could identify epigenetic tree ring features informing on past environmental conditions. We investigated the feasibility of such studies using heartwood samples core-drilled from the trunks of standing oak trees spanning the AD 1776-2014. Heartwood contains little DNA, and large amounts of phenolic compounds known to hinder the preparation of high-throughput sequencing libraries. We sequenced whole-genome and DNA methylome libraries for oak heartwood up to 100 and 50 years of age, respectively. However, only 56 genomic regions with sufficient coverage for quantitative methylation analysis were identified, suggesting that the high-throughput sequencing of DNA will be in principal feasible for wood formed <100 years ago is impeded by the reduction in library complexity caused by the bisulfite treatment used to generate the oak methylome.
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:The goal of this Whole Genome Sequencing (WGS) analysis was to identify genes underlying TCS in C. elegans strain expressing the gut-specific hsp-90 hairpin RNAi construct compared to a control strain (strain AM994). To do this we performed a forward genetic screen using the mutagen EMS and screened progeny for reduced TCS-mediated expression of the hsp-70p::mCherry reporter in muscle cells.
Project description:RPE cells from WT and Total RNA was isolated from WT and LC3b-/- mice were isolated by enzymatic treatment and gentle dissociation, followed by RNA extraction. RNA-sequencing by the Next-Generation Sequencing Core of the University of Pennsylvania.
Project description:To characterize the site-specific methylation landscape of the Mandarin fish ranavirus (MRV) genome, whole-genome bisulfite sequencing (WGBS) was conducted on an isolated MRV strain.