Project description:To explore the interspecies electron transfer and substrate co-metabolism mechanism between denitrifiers and electroactive microorganisms
Project description:Purpose: To understand the adaptive mechanisms of Methanocellales to low H2 and syntrophic growth. Methods: We analyzed the transcriptomes of M. conradii and P. thermopropionicum under monoculture and syntrophic coculture conditions by strand specific mRNA sequencing using Illumina Hiseq 2000. Four biological replicates were sequenced. The sequence reads that passed quality filters were analyzed by Burrows–Wheeler Aligner (BWA) followed by HTSeq and DESeq2. qRT–PCR validation was performed using SYBR Green assays Results: The results showed that M. conradii and P. thermopropionicum interacted closely and synchronized their gene transcription during the syntrophic growth. In coculture, M. conradii and P. thermopropionicum significantly enhanced the transcription of genes related to energy conservation processes, including methanogenesis, propionate degradation and electron bifurcation. By contrast, the genes coding for biosynthesis steps were downregulated in both M. conradii and P. thermopropionicum during the syntrophic growth. The physiology experiment showed that formate but not H2 inhibited syntrophic oxidation of propionate. Accordingly, formate dehydrogenase-encoding genes in both M. conradii and P. thermopropionicum were markedly upregulated, indicating that formate plays an important role in the interspecies electron transfer between M. conradii and P. thermopropionicum in coculture. Conclusions: our study provides abundant transcriptome data indicating the adaptations of Methanocella spp. to H2 limitation and suggests that flavin based electron bifurcations are critical to the syntrophic growth in both M. conradii and P. thermopropionicum.
2018-01-01 | GSE103596 | GEO
Project description:TRANSCRIPTOMIC AND GENETIC ANALYSIS OF DIRECT INTERSPECIES ELECTRON TRANSFER
Project description:Propionate accumulation is an important bottleneck for anaerobic degradation of organic matter. We hypothesized that propionate conversion by a novel coculture of Syntrophobacter fumaroxidans and Geobacter sulfurreducens can be an alternative strategy for propionate oxidation coupled to Fe(III) reduction. In this study, we successfully cocultured S. fumaroxidans and G. sulfurreducens on propionate and Fe(III). Proteomic analyses of this coculture provided insights into the underlying mechanisms of propionate metabolism pathway and interspecies electron transfer mechanism. Our study can be further useful in understanding syntrophic propionate degradation in bioelectrochemical and anaerobic digestion systems.
2022-02-17 | PXD027104 | Pride
Project description:Carbon cloth stimulates direct interspecies electron transfer for phenol biodegradation
| PRJNA973252 | ENA
Project description:different conductive materials-mediated direct interspecies electron transfer during anaerobic digestion
| PRJNA1122999 | ENA
Project description:Different interspecies electron transfer patterns during mesophilic and thermophilic syntrophic propionate degradation in chemostats
Project description:There is a wide diversity of potential applications for direct electron transfer from electrodes to microorganisms, which might be better optimized if the mechanisms for this novel electrode-biofilm interaction were further understood. Geobacter sulfurreducens is one of the few microorganisms available in pure culture that is known to be capable of directly accepting electrons from a negatively poised electrode. Gene transcript abundance in cells of G. sulfurreducens using electrons delivered from a graphite electrode as the sole electron donor for fumarate reduction was compared with transcript abundance in cells growing on the same graphite material, but without an electrical connection and acetate as the electron donor.
2010-11-23 | GSE19149 | GEO
Project description:Electron and Proton Flux for Carbon Dioxide Reduction in Methanosarcina barkeri During Direct Interspecies Electron Transfer
| PRJNA501858 | ENA
Project description:Understanding the ecophysiology of the key partners participating in direct interspecies electron transfer