Project description:BACKGROUND: Metagenomic studies carried out in the past decade have led to an enhanced understanding of the gut microbiome in human health, however, the Indian gut microbiome is not well explored yet. We analysed the gut microbiome of 110 healthy individuals from two distinct locations (North-Central and Southern) in India using multi-omics approaches, including 16S rRNA gene amplicon sequencing, whole genome shotgun metagenomic sequencing, and metabolomic profiling of faecal and serum samples. </br> RESULTS: The gene catalogue established in this study emphasizes the uniqueness of the Indian gut microbiome in comparison to other populations. The gut microbiome of the cohort from North-Central India, which was primarily consuming a plant-based diet, was found to be associated with Prevotella, and also showed an enrichment of Branched Chain Amino Acid (BCAA) and lipopolysaccharide (LPS) biosynthesis pathways. In contrast, the gut microbiome of the cohort from Southern India, which was consuming an omnivorous diet, showed associations with Bacteroides, Ruminococcus and Faecalibacterium, and had an enrichment of Short Chain Fatty Acid (SCFA) biosynthesis pathway and BCAA transporters. This corroborated well with the metabolomics results, which showed higher concentration of BCAAs in the serum metabolome of the North-Central cohort and an association with Prevotella. In contrast, the concentration of BCAAs were found higher in the faecal metabolome of the Southern-India cohort, and showed a positive correlation with the higher abundance of BCAA transporters. </br> CONCLUSIONS: The study reveals the unique composition of Indian gut microbiome, establishes the Indian gut microbial gene catalogue, and compares it with the gut microbiome of other populations. The functional associations revealed using metagenomic and metabolomic approaches provide novel insights on the gut-microbe-metabolic axis, which will be useful for future epidemiological and translational researches.
Project description:Difference in gut microbiome is linked with health, disease and eventually host fitness, however, the molecular mechanisms by which this variation affects the host fitness are not well characterized. Here, we modified the fish gut microbiota by using antibiotic and probiotic to address the effect of host microbiome on gene expression pattern by using transcriptome.
Project description:Archaeological materials are a finite resource, and efforts should be made to minimize destructive analyses. This can be achieved by using protocols combining extraction of several lines of evidence, which decreases the material needed for analyses while maximizing the information yield. Archaeological dental calculus is a source of several different types of biomolecules, as well as microfossils, and can tell us about the human host, microbiome, diet, and even occupational activities. Here, we present a unified protocol allowing for simultaneous extraction of DNA and proteins from archaeological dental calculus. We evaluate the protocol on dental calculus from a range of ages and estimated preservation states, and compare it against standard DNA-only and protein-only protocols. We find that most aspects of downstream analyses are unaffected by the unified protocol, although minor shifts in the recovered proteome can be detected. Protein recovery depends on both the amount of starting material and choice of extraction protocol, whereas DNA recovery is significantly lowered through the unified protocol. However, DNA recovery from dental calculus is generally very high, and we found no differences in DNA fragment characteristics or taxonomic profile. In conclusion, the unified protocol allows for simultaneous extraction of two complementary lines of evidence from archaeological dental calculus without compromising downstream analyses, thereby minimizing the need for destructive analysis of this finite resource.
Project description:The human gut is colonized by trillions of microorganisms that influence human health and disease through the metabolism of xenobiotics, including therapeutic drugs and antibiotics. The diversity and metabolic potential of the human gut microbiome have been extensively characterized, but it remains unclear which microorganisms are active and which perturbations can influence this activity. Here, we use flow cytometry, 16S rRNA gene sequencing, and metatranscriptomics to demonstrate that the human gut contains distinctive subsets of active and damaged microorganisms, primarily composed of Firmicutes, which display marked temporal variation. Short-term exposure to a panel of xenobiotics resulted in significant changes in the physiology and gene expression of this active microbiome. Xenobiotic-responsive genes were found across multiple bacterial phyla, encoding novel candidate proteins for antibiotic resistance, drug metabolism, and stress response. These results demonstrate the power of moving beyond DNA-based measurements of microbial communities to better understand their physiology and metabolism. RNA-Seq analysis of the human gut microbiome during exposure to antibiotics and therapeutic drugs.