Project description:The human brain has changed dramatically from other primate species, but the genetic and developmental mechanisms behind the differences remains unclear. Here we used single cell RNA sequencing based on 10X technology to explore temporal transcriptomic dynamics and cellular heterogeneity in cerebral organoids derived from human and non-human primates chimpanzee and rhesus macaque stem cells. Using cerebral organoids as a proxy of early brain development, we detect a delayed pace of human brain development relative to the other two primate species. Additional human-specific gene expression patterns resolved to different cell states through progenitors to neurons are also found. Our data provide a transcriptomic cell atlas of primate early brain development, and illustrate features that are unique to humans.
Project description:The human brain has changed dramatically from other primate species, but the genetic and developmental mechanisms behind the differences remains unclear. Here we used single cell RNA sequencing based on 10X technology to explore temporal transcriptomic dynamics and cellular heterogeneity in cerebral organoids derived from human and non-human primates chimpanzee and rhesus macaque stem cells. Using cerebral organoids as a proxy of early brain development, we detect a delayed pace of human brain development relative to the other two primate species. Additional human-specific gene expression patterns resolved to different cell states through progenitors to neurons are also found. Our data provide a transcriptomic cell atlas of primate early brain development, and illustrate features that are unique to humans.
Project description:This SuperSeries is composed of the following subset Series: GSE13884: INTER_specific hybs: A Burst of Segmental Duplications in the African Great Ape Ancestor GSE13885: INTRA_specific hybs: A Burst of Segmental Duplications in the African Great Ape Ancestor Refer to individual Series
Project description:Single cell ATAC-seq (scATAC-seq) was performed on macaque embryonic stem cell-derived cerebral organoids. scATAC-seq was performed on day 60 (2 months old cerebral organoid).
Project description:Single cell ATAC-seq (scATAC-seq) was performed on bonobo induced pluripotent stem cells (iPSC) derived cerebral organoids. scATAC-seq was performed on day 60 (2 months old cerebral organoid) and day 120 (4 months old cerebral organoid).
Project description:Single cell ATAC-seq (scATAC-seq) was performed at various stages of differentiation of human pluripotent stem cells to 4 month old cerebral organoids. scATAC-seq was performed on the following days of differentiation: day 0 (pluripotent stem cell), day 4 (embryoid body), day 10 (neuroectoderm), day 15 (neuroepithelium), day 30 (1 month old cerebral organoid), day 60 (2 months old cerebral organoid), and day 120 (4 months old cerebral organoid).
Project description:Single cell ATAC-seq (scATAC-seq) was performed at various stages of differentiation of chimpanzee induced pluripotent stem cells (iPSC) to 4 month old cerebral organoids. scATAC-seq was performed on the following days of differentiation: day 0 (pluripotent stem cell), day 4 (embryoid body), day 10 (neuroectoderm), day 15 (neuroepithelium), day 30 (1 month old cerebral organoid), day 60 (2 months old cerebral organoid), and day 120 (4 months old cerebral organoid).