Project description:The mechanisms underlying nuclear body (NB) formation and their contribution to genome function are unknown. We examined the non-random positioning of Cajal bodies (CBs), major NBs involved in spliceosomal snRNP assembly, and their role in genome organization. CBs are predominantly located at the periphery of chromosome territories at a multi-chromosome interface. Genome-wide chromatin conformation capture analysis (4C-seq) using CB-interacting loci revealed that CB-associated regions are enriched with highly expressed histone genes and U small nuclear and nucleoar RNA (sn/snoRNA) loci that form intra- and inter-chromosomal clusters. We observed a number of CB-dependent gene positioning events on chromosome 1. RNAi-mediated disassembly of CBs disrupts the CB-targeting gene clusters and suppresses the expression of U sn/snoRNA and histone genes. This loss of spliceosomal snRNP production resulted in increased splicing noise, even in CB-distal regions. We conclude that CBs contribute to genome organization with global effects on gene expression and RNA splicing fidelity.
Project description:By CRISPR DNA-fragment editing, in conjunction with chromosome conformation capture, we find that CBSs, if located between enhancers and promoters in the clustered Pcdh and b-globin clusters, function as an enhancer-blocking insulator by forming distinct directional chromatin loops, regardless whether enhancers contain CBS or not. Moreover, computational simulation in silico and genetic deletions in vivo revealed balanced promoter usage in cell populations and stochastic monoallelic expression in single cells by large arrays of tandem variable CBSs. Finally, gene expression levels are negatively correlated with CBS insulators located between enhancers and promoters on a genome-wide scale. Thus, single CBS insulators ensure proper enhancer insulation and promoter activation while tandem-arrayed CBS insulators determine balanced promoter choice. This finding has interesting implications on the role of topological insulators in 3D genome folding and developmental gene regulation.
Project description:CTCF is a key insulator-binding protein and mammalian genomes contain numerous CTCF-binding sites (CBSs), many of which are organized in tandem arrays. Here we provide direct evidence that CBSs, if located between enhancers and promoters in the clustered Pcdh and b-globin clusters, function as an enhancer-blocking insulator by forming distinct directional chromatin loops, regardless whether enhancers contain CBS or not. Moreover, computational simulation and experimental capture revealed balanced promoter usage in vivo in cell populations and stochastic monoallelic expression in single cells by large arrays of tandem variable CBSs. Finally, gene expression levels are negatively correlated with CBS insulators located between enhancers and promoters on a genome-wide scale. Thus, single CBS insulators ensure proper enhancer insulation and promoter activation while tandem-arrayed CBS insulators determine balanced promoter choice. This finding has interesting implications on the role of topological insulators in 3D genome folding and developmental gene regulation.
2020-03-01 | GSE139679 | GEO
Project description:Whole genome sequencing of Saprochaete clavata isolates