Project description:The conifer needle endophyte, Phialocephala scopiformis, was cultivated in media containing ground Pinus contorta wood as sole carbon source. After five and seven days growth, concentrated extracellular fluids were subjected to LC-MS/MS analyses.
Project description:The response mechanisms, recognition and specificity of conifer trees during interaction with pathogenic, saprotrophic or symbiotic ectomycorrhizal fungus were investigated. The roots of Pinus sylvestris were challenged for five days with either Heterobasidion annosum (a pathogenic root rot fungus which attacks Norway spruce, Scots pine and broad leaf trees); Laccaria bicolor (an obligate ectomycorrhizal symbiont); or Trichoderma aureoviride (an obligate saprotroph). The gene expression data from cDNA micro-arrays consisting of 2176 Pinus taeda genes were analysed using 2-interconnected mixed linear model statistical approach. The result of the pairwise comparisons of the different treatments against un-inoculated control led to identification of genes specifically differentially expressed in the pathogenic, saprotrophic and symbiotic interactions. The results were compared with similar data obtained for two other interaction stages: 1 and 15 days post inoculation. The result of this comprehensive expression profiling will hopefully shed more light on the mechanistic basis for recognition and response of conifer trees to pathogenic and non-pathogenic fungi. Keywords: stress response
2006-07-31 | GSE5408 | GEO
Project description:RAD-seq data for five species of Leptocorisa
Project description:The goal of this experiment is to evaluate the potential for utilising this oligonucleotide microarray in other species and genera of the Pinaceae family by using comparative RNA hybridizations in four different spruces (Picea spp), two pines (Pinus spp.) and a larch (Larix laricina), across two tissues, xylem and phelloderm. One-color comparison of 7 conifer species in 2 tissue types: xylem and phelloderm. Between 4 and 28 biological repetitions per sample type, depending on the species, for a total of 142 slides.
Project description:<p><strong>BACKGROUND:</strong> Manchurian walnut (Juglans mandshurica Maxim.) is a tree with multiple industrial uses and medicinal properties in the Juglandaceae family (walnuts and hickories). J. mandshurica produces juglone, which is a toxic allelopathic agent and has potential utilization value. Furthermore, the seed of J. mandshurica is rich in various unsaturated fatty acids and has high nutritive value.</p><p><strong>FINDINGS:</strong> Here, we present a high-quality chromosome-scale reference genome assembly and annotation for J. mandshurica (n = 16) with a contig N50 of 21.4 Mb by combining PacBio high-fidelity reads with high-throughput chromosome conformation capture data. The assembled genome has an estimated sequence size of 548.7 Mb and consists of 657 contigs, 623 scaffolds and 40,453 protein-coding genes. In total, 60.99% of the assembled genome consists of repetitive sequences. Sixteen super-scaffolds corresponding to the 16 chromosomes were assembled, with a scaffold N50 length of 33.7 Mb and a BUSCO complete gene percentage of 98.3%. J. mandshurica displays a close sequence relationship with Juglans cathayensis, with a divergence time of 13.8 million years ago. Combining the high-quality genome, transcriptome and metabolomics data, we constructed a gene-to-metabolite network and identified 566 core and conserved differentially expressed genes, which may be involved in juglone biosynthesis. Five CYP450 genes were found that may contribute to juglone accumulation. NAC, bZip, NF-YA and NF-YC are positively correlated with the juglone content. Some candidate regulators (e.g., FUS3, ABI3, LEC2 and WRI1 transcription factors) involved in the regulation of lipid biosynthesis were also identified.</p><p><strong>CONCLUSIONS:</strong> Our genomic data provide new insights into the evolution of the walnut genome and create a new platform for accelerating molecular breeding and improving the comprehensive utilization of these economically important tree species.</p>
Project description:The widespread use of plant grafting has enabled different plants to join and combine their best properties to improve stress tolerance, growth and yields. Grafting is commonly performed between closely related eudicots or gymnosperms where mechanisms permit tissue fusion yet limit success as plants become unrelated. To investigate these aspects, we developed a micrografting method using young conifer tree seedlings that enabled divergent conifer members to successfully graft. Conifer grafts showed rapid connection of phloem and xylem at the junction, while a genome-wide transcriptome analysis of the Picea abies (Norway spruce) healing junction revealed differential expression of thousands of genes including those related to auxin response and cell wall biogenesis. We compared these genes to those induced during Arabidopsis thaliana graft healing and found a common activation of cambium, cell division, phloem and xylem-related genes. A gene regulatory network analysis revealed that PHYTOCHROME A SIGNAL TRANSDUCTION 1 (PAT1) acted as a central hub during Picea grafting and was also induced during Arabidopsis grafting. Arabidopsis mutants lacking PATs failed to attach tissues or successfully graft, while complementing Arabidopsis PAT mutants with the Picea abies PAT1 homolog could rescue tissue attachment and enhance callus formation. Together, our data demonstrate a competency for young tissues to graft to distantly related species and identifies the PAT gene family as conserved regulators of graft healing and tissue regeneration in eudicots and gymnosperms.
Project description:The widespread use of plant grafting has enabled different plants to join and combine their best properties to improve stress tolerance, growth and yields. Grafting is commonly performed between closely related eudicots or gymnosperms where mechanisms permit tissue fusion yet limit success as plants become unrelated. To investigate these aspects, we developed a micrografting method using young conifer tree seedlings that enabled divergent conifer members to successfully graft. Conifer grafts showed rapid connection of phloem and xylem at the junction, while a genome-wide transcriptome analysis of the Picea abies (Norway spruce) healing junction revealed differential expression of thousands of genes including those related to auxin response and cell wall biogenesis. We compared these genes to those induced during Arabidopsis thaliana graft healing and found a common activation of cambium, cell division, phloem and xylem-related genes. A gene regulatory network analysis revealed that PHYTOCHROME A SIGNAL TRANSDUCTION 1 (PAT1) acted as a central hub during Picea grafting and was also induced during Arabidopsis grafting. Arabidopsis mutants lacking PATs failed to attach tissues or successfully graft, while complementing Arabidopsis PAT mutants with the Picea abies PAT1 homolog could rescue tissue attachment and enhance callus formation. Together, our data demonstrate a competency for young tissues to graft to distantly related species and identifies the PAT gene family as conserved regulators of graft healing and tissue regeneration in eudicots and gymnosperms.
2023-10-01 | GSE231631 | GEO
Project description:small RNA sequencing data and degradome sequencing data of five Aurantioideae species